U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
- URL: http://arxiv.org/abs/2307.09947v1
- Date: Wed, 19 Jul 2023 12:41:54 GMT
- Title: U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
- Authors: Steven Landgraf, Markus Hillemann, Kira Wursthorn, Markus Ulrich
- Abstract summary: We present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that incorporates dynamic predictive uncertainties into the training process by pixel-wise weighting of the well-known cross-entropy loss (CE)
We demonstrate the superiority of U-CE over regular CE training on two benchmark datasets, Cityscapes and ACDC, using two common backbone architectures, ResNet-18 and ResNet-101.
- Score: 11.099838952805325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have shown exceptional performance in various tasks, but
their lack of robustness, reliability, and tendency to be overconfident pose
challenges for their deployment in safety-critical applications like autonomous
driving. In this regard, quantifying the uncertainty inherent to a model's
prediction is a promising endeavour to address these shortcomings. In this
work, we present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that
incorporates dynamic predictive uncertainties into the training process by
pixel-wise weighting of the well-known cross-entropy loss (CE). Through
extensive experimentation, we demonstrate the superiority of U-CE over regular
CE training on two benchmark datasets, Cityscapes and ACDC, using two common
backbone architectures, ResNet-18 and ResNet-101. With U-CE, we manage to train
models that not only improve their segmentation performance but also provide
meaningful uncertainties after training. Consequently, we contribute to the
development of more robust and reliable segmentation models, ultimately
advancing the state-of-the-art in safety-critical applications and beyond.
Related papers
- The BRAVO Semantic Segmentation Challenge Results in UNCV2024 [68.20197719071436]
We define two categories of reliability: (1) semantic reliability, which reflects the model's accuracy and calibration when exposed to various perturbations; and (2) OOD reliability, which measures the model's ability to detect object classes that are unknown during training.
The results reveal interesting insights into the importance of large-scale pre-training and minimal architectural design in developing robust and reliable semantic segmentation models.
arXiv Detail & Related papers (2024-09-23T15:17:30Z) - Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
In this paper, we revisit techniques for uncertainty estimation within deep neural networks and consolidate a suite of techniques to enhance their reliability.
We rigorously evaluate SURE against the benchmark of failure prediction, a critical testbed for uncertainty estimation efficacy.
When applied to real-world challenges, such as data corruption, label noise, and long-tailed class distribution, SURE exhibits remarkable robustness, delivering results that are superior or on par with current state-of-the-art specialized methods.
arXiv Detail & Related papers (2024-03-01T13:58:19Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Building Robust Ensembles via Margin Boosting [98.56381714748096]
In adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks.
We develop an algorithm for learning an ensemble with maximum margin.
We show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-07T14:55:58Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.