Building Robust Ensembles via Margin Boosting
- URL: http://arxiv.org/abs/2206.03362v1
- Date: Tue, 7 Jun 2022 14:55:58 GMT
- Title: Building Robust Ensembles via Margin Boosting
- Authors: Dinghuai Zhang, Hongyang Zhang, Aaron Courville, Yoshua Bengio,
Pradeep Ravikumar, Arun Sai Suggala
- Abstract summary: In adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks.
We develop an algorithm for learning an ensemble with maximum margin.
We show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion.
- Score: 98.56381714748096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of adversarial robustness, a single model does not usually
have enough power to defend against all possible adversarial attacks, and as a
result, has sub-optimal robustness. Consequently, an emerging line of work has
focused on learning an ensemble of neural networks to defend against
adversarial attacks. In this work, we take a principled approach towards
building robust ensembles. We view this problem from the perspective of
margin-boosting and develop an algorithm for learning an ensemble with maximum
margin. Through extensive empirical evaluation on benchmark datasets, we show
that our algorithm not only outperforms existing ensembling techniques, but
also large models trained in an end-to-end fashion. An important byproduct of
our work is a margin-maximizing cross-entropy (MCE) loss, which is a better
alternative to the standard cross-entropy (CE) loss. Empirically, we show that
replacing the CE loss in state-of-the-art adversarial training techniques with
our MCE loss leads to significant performance improvement.
Related papers
- On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-08-17T10:05:05Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Boosting Adversarial Robustness From The Perspective of Effective Margin
Regularization [58.641705224371876]
The adversarial vulnerability of deep neural networks (DNNs) has been actively investigated in the past several years.
This paper investigates the scale-variant property of cross-entropy loss, which is the most commonly used loss function in classification tasks.
We show that the proposed effective margin regularization (EMR) learns large effective margins and boosts the adversarial robustness in both standard and adversarial training.
arXiv Detail & Related papers (2022-10-11T03:16:56Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks.
robustness will drop sharply at a certain stage, always exists during AT.
consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting.
arXiv Detail & Related papers (2022-05-24T03:18:43Z) - On the Convergence and Robustness of Adversarial Training [134.25999006326916]
Adrial training with Project Gradient Decent (PGD) is amongst the most effective.
We propose a textitdynamic training strategy to increase the convergence quality of the generated adversarial examples.
Our theoretical and empirical results show the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-12-15T17:54:08Z) - Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch [60.23815709215807]
We study the inverse reinforcement learning (IRL) problem under a transition dynamics mismatch between the expert and the learner.
We propose a robust MCE IRL algorithm, which is a principled approach to help with this mismatch.
arXiv Detail & Related papers (2020-07-02T14:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.