UniMatch: A Unified User-Item Matching Framework for the Multi-purpose
Merchant Marketing
- URL: http://arxiv.org/abs/2307.09989v1
- Date: Wed, 19 Jul 2023 13:49:35 GMT
- Title: UniMatch: A Unified User-Item Matching Framework for the Multi-purpose
Merchant Marketing
- Authors: Qifang Zhao, Tianyu Li, Meng Du, Yu Jiang, Qinghui Sun, Zhongyao Wang,
Hong Liu, Huan Xu
- Abstract summary: We present a unified user-item matching framework to simultaneously conduct item recommendation and user targeting with just one model.
Our framework results in significant performance gains in comparison with the state-of-the-art methods, with greatly reduced cost on computing resources and daily maintenance.
- Score: 27.459774494479227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When doing private domain marketing with cloud services, the merchants
usually have to purchase different machine learning models for the multiple
marketing purposes, leading to a very high cost. We present a unified user-item
matching framework to simultaneously conduct item recommendation and user
targeting with just one model. We empirically demonstrate that the above
concurrent modeling is viable via modeling the user-item interaction matrix
with the multinomial distribution, and propose a bidirectional bias-corrected
NCE loss for the implementation. The proposed loss function guides the model to
learn the user-item joint probability $p(u,i)$ instead of the conditional
probability $p(i|u)$ or $p(u|i)$ through correcting both the users and items'
biases caused by the in-batch negative sampling. In addition, our framework is
model-agnostic enabling a flexible adaptation of different model architectures.
Extensive experiments demonstrate that our framework results in significant
performance gains in comparison with the state-of-the-art methods, with greatly
reduced cost on computing resources and daily maintenance.
Related papers
- Mixture of Nested Experts: Adaptive Processing of Visual Tokens [49.43920770789789]
Vision Transformer (ViT) based models fail to capitalize on inherent redundancy, leading to higher computational costs.
We present Mixture of Nested Experts (MoNE), which utilizes a nested structure for experts, wherein individual experts fall on an increasing compute-accuracy curve.
We validate our approach on standard image and video datasets - ImageNet-21K, Kinetics400, and Something-Something-v2.
arXiv Detail & Related papers (2024-07-29T13:19:31Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Modeling Choice via Self-Attention [8.394221523847325]
We show that our attention-based choice model is a low-optimal generalization of the Halo Multinomial Logit (Halo-MNL) model.
We also establish the first realistic-scale benchmark for choice estimation on real data, conducting an evaluation of existing models.
arXiv Detail & Related papers (2023-11-11T11:13:07Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - User-click Modelling for Predicting Purchase Intent [0.0]
This thesis contributes a structured inquiry into the open actuarial mathematics problem of modelling user behaviour.
It is valuable for a company to understand user interactions with their website as it provides rich and individualized insight into consumer behaviour.
arXiv Detail & Related papers (2021-12-03T16:37:48Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
Personalization in federated learning can improve the accuracy of a model for a user by trading off the model's bias.
We formalize the personalized collaborative learning problem as optimization of a user's objective.
We explore conditions under which we can optimally trade-off their bias for a reduction in variance.
arXiv Detail & Related papers (2021-11-10T22:12:52Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Model-Augmented Q-learning [112.86795579978802]
We propose a MFRL framework that is augmented with the components of model-based RL.
Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network.
We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward.
arXiv Detail & Related papers (2021-02-07T17:56:50Z) - DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and
Feature Selection for Financial Data Analysis [22.035287788330663]
We propose DoubleEnsemble, an ensemble framework leveraging learning trajectory based sample reweighting and shuffling based feature selection.
Our model is applicable to a wide range of base models, capable of extracting complex patterns, while mitigating the overfitting and instability issues for financial market prediction.
arXiv Detail & Related papers (2020-10-03T02:57:10Z) - TPG-DNN: A Method for User Intent Prediction Based on Total Probability
Formula and GRU Loss with Multi-task Learning [36.38658213969406]
We propose a novel user intent prediction model, TPG-DNN, to complete the challenging task.
The proposed model has been widely used for the coupon allocation, advertisement and recommendation on Taobao platform.
arXiv Detail & Related papers (2020-08-05T13:25:53Z) - Multi-Purchase Behavior: Modeling, Estimation and Optimization [0.9337154228221861]
We present a parsimonious multi-purchase family of choice models called the Bundle-MVL-K family.
We develop a binary search based iterative strategy that efficiently computes optimized recommendations for this model.
arXiv Detail & Related papers (2020-06-14T23:47:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.