Impact of Disentanglement on Pruning Neural Networks
- URL: http://arxiv.org/abs/2307.09994v1
- Date: Wed, 19 Jul 2023 13:58:01 GMT
- Title: Impact of Disentanglement on Pruning Neural Networks
- Authors: Carl Shneider, Peyman Rostami, Anis Kacem, Nilotpal Sinha, Abd El
Rahman Shabayek, Djamila Aouada
- Abstract summary: Disentangled latent representations produced by variational autoencoder (VAE) networks are a promising approach for achieving model compression.
We make use of the Beta-VAE framework combined with a standard criterion for pruning to investigate the impact of forcing the network to learn disentangled representations.
- Score: 16.077795265753917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning neural networks on edge devices, to accomplish task
specific objectives in the real-world, requires a reduction in their memory
footprint, power consumption, and latency. This can be realized via efficient
model compression. Disentangled latent representations produced by variational
autoencoder (VAE) networks are a promising approach for achieving model
compression because they mainly retain task-specific information, discarding
useless information for the task at hand. We make use of the Beta-VAE framework
combined with a standard criterion for pruning to investigate the impact of
forcing the network to learn disentangled representations on the pruning
process for the task of classification. In particular, we perform experiments
on MNIST and CIFAR10 datasets, examine disentanglement challenges, and propose
a path forward for future works.
Related papers
- Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
Spiking Neural Networks (SNNs) have garnered substantial attention in brain-like computing for their biological fidelity and the capacity to execute energy-efficient spike-driven operations.
We propose a novel training paradigm that first accumulates a large amount of redundant information through OR Residual Connection (ORRC)
We then filters out the redundant information using the Synergistic Attention (SynA) module, which promotes feature extraction in the backbone while suppressing the influence of noise and useless features in the shortcuts.
arXiv Detail & Related papers (2023-11-11T13:36:27Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Self-Compression in Bayesian Neural Networks [0.9176056742068814]
We propose a new insight into network compression through the Bayesian framework.
We show that Bayesian neural networks automatically discover redundancy in model parameters, thus enabling self-compression.
Our experimental results show that the network architecture can be successfully compressed by deleting parameters identified by the network itself.
arXiv Detail & Related papers (2021-11-10T21:19:40Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
We show that the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks.
Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting.
We show that our method allows forgetting without having to trade off the model accuracy.
arXiv Detail & Related papers (2020-12-24T19:34:56Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
arXiv Detail & Related papers (2020-12-15T19:33:09Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.