Attentional Local Contrast Networks for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2012.08573v1
- Date: Tue, 15 Dec 2020 19:33:09 GMT
- Title: Attentional Local Contrast Networks for Infrared Small Target Detection
- Authors: Yimian Dai and Yiquan Wu and Fei Zhou and Kobus Barnard
- Abstract summary: We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
- Score: 15.882749652217653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To mitigate the issue of minimal intrinsic features for pure data-driven
methods, in this paper, we propose a novel model-driven deep network for
infrared small target detection, which combines discriminative networks and
conventional model-driven methods to make use of both labeled data and the
domain knowledge. By designing a feature map cyclic shift scheme, we modularize
a conventional local contrast measure method as a depth-wise parameterless
nonlinear feature refinement layer in an end-to-end network, which encodes
relatively long-range contextual interactions with clear physical
interpretability. To highlight and preserve the small target features, we also
exploit a bottom-up attentional modulation integrating the smaller scale subtle
details of low-level features into high-level features of deeper layers. We
conduct detailed ablation studies with varying network depths to empirically
verify the effectiveness and efficiency of the design of each component in our
network architecture. We also compare the performance of our network against
other model-driven methods and deep networks on the open SIRST dataset as well.
The results suggest that our network yields a performance boost over its
competitors. Our code, trained models, and results are available online.
Related papers
- GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
This study investigates the effectiveness of neural network architectures in hyperspectral image demosaicing.
We introduce a range of network models and modifications, and compare them with classical methods and existing reference network approaches.
Results indicate that our networks outperform or match reference models in both datasets demonstrating exceptional performance.
arXiv Detail & Related papers (2023-12-21T08:02:49Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Dense Nested Attention Network for Infrared Small Target Detection [36.654692765557726]
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds.
Existing CNN-based methods cannot be directly applied for infrared small targets.
We propose a dense nested attention network (DNANet) in this paper.
arXiv Detail & Related papers (2021-06-01T13:45:35Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.