論文の概要: Enhancing Super-Resolution Networks through Realistic Thick-Slice CT
Simulation
- arxiv url: http://arxiv.org/abs/2307.10182v1
- Date: Sun, 2 Jul 2023 11:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-23 11:36:15.807099
- Title: Enhancing Super-Resolution Networks through Realistic Thick-Slice CT
Simulation
- Title(参考訳): Realistic Thick-Slice CT シミュレーションによる超解像ネットワークの強化
- Authors: Zeyu Tang, Xiaodan Xing and Guang Yang
- Abstract要約: 本研究の目的は, 濃厚なCT画像を生成するための革新的なシミュレーションアルゴリズムを開発し, 評価することである。
提案手法はPak Signal-to-Noise Ratio (PSNR) とRoot Mean Square Error (RMSE) を用いて評価した。
新たなアルゴリズムによって生成されたデータを用いて訓練すると、4つのSRモデルすべてが性能が向上した。
- 参考スコア(独自算出の注目度): 1.711876685506149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aims to develop and evaluate an innovative simulation algorithm
for generating thick-slice CT images that closely resemble actual images in the
AAPM-Mayo's 2016 Low Dose CT Grand Challenge dataset. The proposed method was
evaluated using Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error
(RMSE) metrics, with the hypothesis that our simulation would produce images
more congruent with their real counterparts. Our proposed method demonstrated
substantial enhancements in terms of both PSNR and RMSE over other simulation
methods. The highest PSNR values were obtained with the proposed method,
yielding 49.7369 $\pm$ 2.5223 and 48.5801 $\pm$ 7.3271 for D45 and B30
reconstruction kernels, respectively. The proposed method also registered the
lowest RMSE with values of 0.0068 $\pm$ 0.0020 and 0.0108 $\pm$ 0.0099 for D45
and B30, respectively, indicating a distribution more closely aligned with the
authentic thick-slice image. Further validation of the proposed simulation
algorithm was conducted using the TCIA LDCT-and-Projection-data dataset. The
generated images were then leveraged to train four distinct super-resolution
(SR) models, which were subsequently evaluated using the real thick-slice
images from the 2016 Low Dose CT Grand Challenge dataset. When trained with
data produced by our novel algorithm, all four SR models exhibited enhanced
performance.
- Abstract(参考訳): 本研究は,AAPM-Mayoの2016 Low Dose CT Grand Challengeデータセットにおいて,実際の画像によく似た濃厚なCT画像を生成するための革新的なシミュレーションアルゴリズムを開発し,評価することを目的とする。
提案手法はピーク信号対雑音比 (psnr) と根平均二乗誤差 (rmse) の指標を用いて評価し, シミュレーションにより実際の画像とより一致した画像を生成すると仮定した。
提案手法は,PSNR法とRMSE法の両方で他のシミュレーション法よりも大幅に向上した。
提案手法により最も高いpsnr値が得られ、それぞれ49.7369 $\pm$ 2.5223 と 48.5801 $\pm$ 7.3271 が得られた。
提案手法は,D45およびB30に対してそれぞれ0.0068$\pm$ 0.0020,0.0108$\pm$ 0.0099の値で最低のRMSEを登録し,より密集した分布を示す。
TCIA LDCT- and-Projection-dataデータセットを用いてシミュレーションアルゴリズムのさらなる検証を行った。
生成された画像は4つの異なる超解像モデル(SR)を訓練するために利用され、その後2016年の低線CTグランドチャレンジデータセットの実際の厚画像を用いて評価された。
新たなアルゴリズムによって生成されたデータを用いてトレーニングすると,4つのsrモデルで性能が向上した。
関連論文リスト
- Improving Cone-Beam CT Image Quality with Knowledge Distillation-Enhanced Diffusion Model in Imbalanced Data Settings [6.157230849293829]
毎日のコーンビームCT(CBCT)画像は、治療調整の要点であり、組織密度の精度が低い。
治療中のCBCTデータを最大化し, 疎対ファンビームCTで補完した。
本手法はRTにおけるCBCTスキャンから高画質CT画像を生成する上で有望であることを示す。
論文 参考訳(メタデータ) (2024-09-19T07:56:06Z) - Low-Dose CT Image Reconstruction by Fine-Tuning a UNet Pretrained for
Gaussian Denoising for the Downstream Task of Image Enhancement [3.7960472831772765]
Computed Tomography (CT) は医用画像モダリティとして広く用いられているが,低用量CTデータからの再構成は難しい課題である。
本稿では,LDCT画像の再構成を行うための,より複雑な2段階の手法を提案する。
提案手法は,LoDoPaB-CTチャレンジにおける共有トップランキングと,SSIMメトリックに対する第1位を実現する。
論文 参考訳(メタデータ) (2024-03-06T08:51:09Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
そこで本研究では,PCCTにおける材料分解のための新たな深層学習ソリューションを提案する。
提案手法は,最大推定値,変分法,および完全学習ネットワークよりも優れる。
論文 参考訳(メタデータ) (2022-08-05T19:05:16Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Image Synthesis for Data Augmentation in Medical CT using Deep
Reinforcement Learning [31.677682150726383]
本手法は, 新規かつ解剖学的に高精度な高解像度CT画像の大量かつ多種多様な生成に有効であることを示す。
私たちのアプローチは、多くの研究者が利用可能な画像データの少ない量を考えると望ましい小さな画像データセットでも機能するように特別に設計されています。
論文 参考訳(メタデータ) (2021-03-18T19:47:11Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
本研究は,低線量シノグラムを自身のトレーニングターゲットとして用いるためのトレーニングスキームを定義する。
ノイズが要素的に独立な射影領域に自己超越原理を適用する。
提案手法は,従来手法と圧縮方式の両方において,反復的再構成法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T22:02:14Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。