論文の概要: Can Instruction Fine-Tuned Language Models Identify Social Bias through
Prompting?
- arxiv url: http://arxiv.org/abs/2307.10472v1
- Date: Wed, 19 Jul 2023 22:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:28:20.612041
- Title: Can Instruction Fine-Tuned Language Models Identify Social Bias through
Prompting?
- Title(参考訳): プロンプティングによる社会バイアスの同定は可能か?
- Authors: Omkar Dige, Jacob-Junqi Tian, David Emerson, Faiza Khan Khattak
- Abstract要約: 本稿では、ゼロショットプロンプトによるバイアスを識別する微調整言語モデルの評価について述べる。
LLaMAと2つの命令を微調整したバージョンで、Alpaca 7Bは56.7%の精度でバイアス識別タスクで最善を尽くしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the breadth and depth of language model applications continue to expand
rapidly, it is increasingly important to build efficient frameworks for
measuring and mitigating the learned or inherited social biases of these
models. In this paper, we present our work on evaluating instruction fine-tuned
language models' ability to identify bias through zero-shot prompting,
including Chain-of-Thought (CoT) prompts. Across LLaMA and its two instruction
fine-tuned versions, Alpaca 7B performs best on the bias identification task
with an accuracy of 56.7%. We also demonstrate that scaling up LLM size and
data diversity could lead to further performance gain. This is a
work-in-progress presenting the first component of our bias mitigation
framework. We will keep updating this work as we get more results.
- Abstract(参考訳): 言語モデルアプリケーションの幅と深さが急速に拡大するにつれて、これらのモデルの学習または継承された社会的バイアスを測定し緩和するための効率的なフレームワークを構築することがますます重要である。
本稿では,ゼロショットプロンプト(chain-of-thought (cot) プロンプトを含む)によってバイアスを識別する指導微調整言語モデルの能力を評価する。
LLaMAと2つの命令を微調整したバージョンで、Alpaca 7Bは56.7%の精度でバイアス識別タスクに最適である。
LLMのサイズとデータの多様性のスケールアップが、さらなるパフォーマンス向上につながることも示しています。
これは、バイアス緩和フレームワークの最初のコンポーネントを提示するワークインプログレッシブです。
結果が得られ次第、この作業の更新を続けます。
関連論文リスト
- DELIA: Diversity-Enhanced Learning for Instruction Adaptation in Large Language Models [11.77848664657788]
命令のチューニングは、モデルが新しい知識や能力を得るのではなく、特定のタスク形式に適合するプロセスであることを示す。
この制限は, タスク固有の特徴と異なる, 命令チューニング中に学習した偏りのある特徴に起因していると考えられる。
我々は,新たなデータ合成手法であるDELIAを用いて,命令チューニングにおけるバイアスのある特徴を理想的な特徴の近似に変換する。
論文 参考訳(メタデータ) (2024-08-19T17:56:06Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な役割を担っているが、バイアスの持続可能性には重大な懸念がある。
本稿では、英語テキストにおけるジェンダー、人種、宗教的偏見を緩和するために、DPO(Direct Preference Optimization)を用いた新しい枠組みを提案する。
バイアスのある完了よりもバイアスの少ない損失関数を開発することで、我々のアプローチは敬意と非差別的な言語を好む。
論文 参考訳(メタデータ) (2024-07-18T22:32:20Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
大規模な事前訓練型言語モデル(LLM)は、しばしば伝統的な検索エンジンの代替として、広く使われるようになった。
しかし、言語モデルは説得力のあるが事実的に不正確な主張をしがちである(しばしば「幻覚」と呼ばれる)。
本研究では,人間のラベル付けなしに,より現実的な言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-14T18:59:15Z) - Roles of Scaling and Instruction Tuning in Language Perception: Model
vs. Human Attention [58.817405319722596]
本研究は,複数の大規模言語モデル (LLM) を異なる大きさで自己意識的に比較し,言語知覚に対するスケーリングと指導指導の効果を評価する。
その結果,スケーリングは人間の類似性を向上し,簡単なパターン依存を減らし,効果的な注意力を高める一方で,命令チューニングは行わないことがわかった。
また、現在のLLMは、注目されているネイティブスピーカーよりも、常に非ネイティブに近づき、全てのモデルの準最適言語知覚が示唆されている。
論文 参考訳(メタデータ) (2023-10-29T17:16:40Z) - Soft-prompt Tuning for Large Language Models to Evaluate Bias [0.03141085922386211]
ソフトプロンプトを用いてバイアスを評価することで、人間のバイアス注入を避けるというメリットが得られます。
グループフェアネス(バイアス)を用いて、異なる感度属性のモデルバイアスをチェックし、興味深いバイアスパターンを見つけます。
論文 参考訳(メタデータ) (2023-06-07T19:11:25Z) - Language Model Self-improvement by Reinforcement Learning Contemplation [13.152789365858812]
本稿では,LanguageModel Self-Improvement by Reinforcement Learning Contemplation (SIRLC) という,教師なしの新しい手法を提案する。
学生として、モデルはラベルのない質問に対する回答を生成し、教師として、生成されたテキストを評価し、それに応じてスコアを割り当てる。
我々は,SIRLCを推論問題,テキスト生成,機械翻訳など,様々なNLPタスクに適用できることを実証した。
論文 参考訳(メタデータ) (2023-05-23T19:25:52Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
ラベル付きデータにはタスク関連情報が豊富に含まれており、言語モデルの素早い学習に有用であることが証明されている。
本研究では,言語モデルファインチューニングのための自己学習手法を再検討し,最先端のプロンプトベースの少ショット学習者,SFLMを提案する。
論文 参考訳(メタデータ) (2021-10-04T08:51:36Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。