論文の概要: Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples
- arxiv url: http://arxiv.org/abs/2307.10562v1
- Date: Thu, 20 Jul 2023 03:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:02:19.151986
- Title: Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples
- Title(参考訳): 共用逆学習:非学習共用逆学習によるバックドア緩和
- Authors: Shaokui Wei, Mingda Zhang, Hongyuan Zha, Baoyuan Wu
- Abstract要約: バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと敵的リスクの関連性を確立することにより、バックドアリスクに対する新たな上限を導出する。
- 参考スコア(独自算出の注目度): 67.66153875643964
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Backdoor attacks are serious security threats to machine learning models
where an adversary can inject poisoned samples into the training set, causing a
backdoored model which predicts poisoned samples with particular triggers to
particular target classes, while behaving normally on benign samples. In this
paper, we explore the task of purifying a backdoored model using a small clean
dataset. By establishing the connection between backdoor risk and adversarial
risk, we derive a novel upper bound for backdoor risk, which mainly captures
the risk on the shared adversarial examples (SAEs) between the backdoored model
and the purified model. This upper bound further suggests a novel bi-level
optimization problem for mitigating backdoor using adversarial training
techniques. To solve it, we propose Shared Adversarial Unlearning (SAU).
Specifically, SAU first generates SAEs, and then, unlearns the generated SAEs
such that they are either correctly classified by the purified model and/or
differently classified by the two models, such that the backdoor effect in the
backdoored model will be mitigated in the purified model. Experiments on
various benchmark datasets and network architectures show that our proposed
method achieves state-of-the-art performance for backdoor defense.
- Abstract(参考訳): バックドア攻撃は、敵がトレーニングセットに有毒なサンプルを注入し、特定のターゲットクラスに特定のトリガーを含む有毒なサンプルを予測するバックドアモデルを引き起こす機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと逆境リスクの関連性を確立することにより、バックドアモデルと浄化モデルとの間の共有敵例(SAE)のリスクを主に捉えた、バックドアリスクの新たな上限を導出する。
この上界はさらに、対向訓練技術を用いてバックドアを緩和する新しい二段階最適化問題を示唆している。
そこで本稿では,SAU(Shared Adversarial Unlearning)を提案する。
具体的には、SAUはまずSAEを生成し、次いで生成されたSAEを、精製されたモデルによって正しく分類されるか、2つのモデルによって正しく分類され、バックドアモデルにおけるバックドア効果が浄化されたモデルで緩和されるように解放する。
各種ベンチマークデータセットとネットワークアーキテクチャの実験により,提案手法がバックドアディフェンスの最先端性能を実現することを示す。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
ディープニューラルネットワーク(DNN)は、バックドアと敵の攻撃の両方に対して脆弱であることが知られている。
本稿では,バックドアと敵の攻撃との間には興味深い関係があることを明らかにする。
バックドアと敵の攻撃を同時に防御する新しいプログレッシブ統一防衛アルゴリズムが提案されている。
論文 参考訳(メタデータ) (2024-05-28T07:50:00Z) - Partial train and isolate, mitigate backdoor attack [6.583682264938882]
疑わしいサンプルを分離可能なモデルをトレーニングするために,モデルの一部を凍結する新しいモデルトレーニング方法(PT)を提案する。
そして、これに基づいてクリーンモデルが微調整され、バックドア攻撃に抵抗する。
論文 参考訳(メタデータ) (2024-05-26T08:54:43Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
バックドア検出のためのオープンセット分類タスクにモデルペアを用いることを提案する。
このスコアは、異なるアーキテクチャのモデルがあるにもかかわらず、バックドアの存在を示す指標であることを示している。
この技術は、オープンセット分類タスク用に設計されたモデル上のバックドアの検出を可能にするが、文献ではほとんど研究されていない。
論文 参考訳(メタデータ) (2024-02-28T21:29:16Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Universal Soldier: Using Universal Adversarial Perturbations for
Detecting Backdoor Attacks [15.917794562400449]
ディープラーニングモデルは、バックドアデータによるトレーニングや、内部ネットワークパラメータの変更によって悪用される。
引き金について事前に知ることなく、クリーンモデルとバックドアモデルとを区別することは困難である。
UAPによるバックドア検出(USB)とリバースエンジニアリング潜在的なバックドアトリガのためのUniversal Soldierという新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-01T20:47:58Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。