Exploiting Structure for Optimal Multi-Agent Bayesian Decentralized
Estimation
- URL: http://arxiv.org/abs/2307.10594v1
- Date: Thu, 20 Jul 2023 05:16:33 GMT
- Title: Exploiting Structure for Optimal Multi-Agent Bayesian Decentralized
Estimation
- Authors: Christopher Funk, Ofer Dagan, Benjamin Noack and Nisar R. Ahmed
- Abstract summary: Key challenge in Bayesian decentralized data fusion is the rumor propagation' or double counting' phenomenon.
We show that by exploiting the probabilistic independence structure in multi-agent decentralized fusion problems a tighter bound can be found.
We then test our new non-monolithic CI algorithm on a large-scale target tracking simulation and show that it achieves a tighter bound and a more accurate estimate.
- Score: 4.320393382724066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in Bayesian decentralized data fusion is the `rumor
propagation' or `double counting' phenomenon, where previously sent data
circulates back to its sender. It is often addressed by approximate methods
like covariance intersection (CI) which takes a weighted average of the
estimates to compute the bound. The problem is that this bound is not tight,
i.e. the estimate is often over-conservative. In this paper, we show that by
exploiting the probabilistic independence structure in multi-agent
decentralized fusion problems a tighter bound can be found using (i) an
expansion to the CI algorithm that uses multiple (non-monolithic) weighting
factors instead of one (monolithic) factor in the original CI and (ii) a
general optimization scheme that is able to compute optimal bounds and fully
exploit an arbitrary dependency structure. We compare our methods and show that
on a simple problem, they converge to the same solution. We then test our new
non-monolithic CI algorithm on a large-scale target tracking simulation and
show that it achieves a tighter bound and a more accurate estimate compared to
the original monolithic CI.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-means algorithm variants essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution.
We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting.
These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration.
arXiv Detail & Related papers (2023-02-05T18:22:29Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation [6.135577623169028]
We generalize an ad-hoc method, random feature selection, into semi-orthogonal embedding for robust approximation.
With the scrutiny of ablation studies, the proposed method achieves a new state-of-the-art with significant margins for the MVTec AD, KolektorSDD, KolektorSDD2, and mSTC datasets.
arXiv Detail & Related papers (2021-05-31T07:02:20Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Kernel k-Means, By All Means: Algorithms and Strong Consistency [21.013169939337583]
Kernel $k$ clustering is a powerful tool for unsupervised learning of non-linear data.
In this paper, we generalize results leveraging a general family of means to combat sub-optimal local solutions.
Our algorithm makes use of majorization-minimization (MM) to better solve this non-linear separation problem.
arXiv Detail & Related papers (2020-11-12T16:07:18Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures.
We propose a generalized canonical correlation analysis (GCCA), which could detect the latent relations of multiview data with sparse structures.
arXiv Detail & Related papers (2020-04-23T05:53:48Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.