Regularization and Optimization in Model-Based Clustering
- URL: http://arxiv.org/abs/2302.02450v2
- Date: Mon, 5 Feb 2024 18:40:58 GMT
- Title: Regularization and Optimization in Model-Based Clustering
- Authors: Raphael Araujo Sampaio, Joaquim Dias Garcia, Marcus Poggi, Thibaut
Vidal
- Abstract summary: k-means algorithm variants essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution.
We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting.
These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration.
- Score: 4.096453902709292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to their conceptual simplicity, k-means algorithm variants have been
extensively used for unsupervised cluster analysis. However, one main
shortcoming of these algorithms is that they essentially fit a mixture of
identical spherical Gaussians to data that vastly deviates from such a
distribution. In comparison, general Gaussian Mixture Models (GMMs) can fit
richer structures but require estimating a quadratic number of parameters per
cluster to represent the covariance matrices. This poses two main issues: (i)
the underlying optimization problems are challenging due to their larger number
of local minima, and (ii) their solutions can overfit the data. In this work,
we design search strategies that circumvent both issues. We develop more
effective optimization algorithms for general GMMs, and we combine these
algorithms with regularization strategies that avoid overfitting. Through
extensive computational analyses, we observe that optimization or
regularization in isolation does not substantially improve cluster recovery.
However, combining these techniques permits a completely new level of
performance previously unachieved by k-means algorithm variants, unraveling
vastly different cluster structures. These results shed new light on the
current status quo between GMM and k-means methods and suggest the more
frequent use of general GMMs for data exploration. To facilitate such
applications, we provide open-source code as well as Julia packages
(UnsupervisedClustering.jl and RegularizedCovarianceMatrices.jl) implementing
the proposed techniques.
Related papers
- A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) aims to classify both base and novel images using labeled base data.
Current approaches inadequately address the intrinsic optimization of the co-occurrence matrix $barA$ based on cosine similarity.
We propose a Non-Negative Generalized Category Discovery (NN-GCD) framework to address these deficiencies.
arXiv Detail & Related papers (2024-10-29T07:24:11Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Algorithme EM r\'egularis\'e [0.0]
This paper presents a regularized version of the EM algorithm that efficiently uses prior knowledge to cope with a small sample size.
Experiments on real data highlight the good performance of the proposed algorithm for clustering purposes.
arXiv Detail & Related papers (2023-07-04T23:19:25Z) - Regularized EM algorithm [9.367612782346205]
We present a regularized EM algorithm for GMM-s that can make efficient use of such prior knowledge as well as cope with LSS situations.
We show that the theoretical guarantees of convergence hold, leading to better performing EM algorithm for structured covariance matrix models or with low sample settings.
arXiv Detail & Related papers (2023-03-27T08:32:20Z) - A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems [0.0]
This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups.
Successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time.
arXiv Detail & Related papers (2023-02-16T23:29:01Z) - A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data [0.0]
We introduce an innovative algorithm that evaluates cluster effects for new data points, thereby increasing the robustness and precision of this model.
The inferential and predictive efficacy of this approach is further illustrated through its application in student scoring and protein expression.
arXiv Detail & Related papers (2023-02-06T23:34:51Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering [2.5182813818441945]
Recently introduced convex clustering approach formulates clustering as a convex optimization problem.
State-of-the-art convex clustering algorithms require large computation and memory space.
In this paper, we develop a very efficient smoothing gradient algorithm (Sproga) for convex clustering.
arXiv Detail & Related papers (2020-06-22T20:02:59Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.