論文の概要: Parallelization of a new embedded application for automatic meteor
detection
- arxiv url: http://arxiv.org/abs/2307.10632v1
- Date: Thu, 20 Jul 2023 06:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 14:18:49.752597
- Title: Parallelization of a new embedded application for automatic meteor
detection
- Title(参考訳): 自動流星検出のための新しい組込みアプリケーションの並列化
- Authors: Mathuran Kandeepan (ALSOC), Clara Ciocan (ALSOC), Adrien Cassagne
(ALSOC), Lionel Lacassagne (ALSOC)
- Abstract要約: 本稿では,新しいコンピュータビジョンアプリケーションを並列化する手法について述べる。
このシステムは、不安定なカメラとノイズの多いビデオシーケンスから隕石を自動的に検出する。
このアプリケーションは、気象気球や空中観測キャンペーンに組み込むように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents the methods used to parallelize a new computer vision
application. The system is able to automatically detect meteor from
non-stabilized cameras and noisy video sequences. The application is designed
to be embedded in weather balloons or for airborne observation campaigns. Thus,
the final target is a low power system-on-chip (< 10 Watts) while the software
needs to compute a stream of frames in real-time (> 25 frames per second). For
this, first the application is split in a tasks graph, then different
parallelization techniques are applied. Experiment results demonstrate the
efficiency of the parallelization methods. For instance, on the Raspberry Pi 4
and on a HD video sequence, the processing chain reaches 42 frames per second
while it only consumes 6 Watts.
- Abstract(参考訳): 本稿では,新しいコンピュータビジョンアプリケーションを並列化する手法を提案する。
このシステムは、不安定なカメラとノイズの多いビデオシーケンスから、自動的に流星を検出できる。
このアプリケーションは、気象気球や空中観測キャンペーンに組み込むように設計されている。
したがって、最終ターゲットは低消費電力のシステムオンチップ(10ワット)であり、ソフトウェアはリアルタイムでフレームのストリームを計算する必要がある(毎秒25フレーム)。
このために、最初にアプリケーションをタスクグラフに分割すると、異なる並列化技術が適用されます。
実験結果は並列化法の効率を示す。
例えばraspberry pi 4やhdビデオシーケンスでは、処理チェーンは毎秒42フレームに達するが、6ワットしか消費しない。
関連論文リスト
- AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiffは、複数のデバイスにまたがるモデル並列化を可能にする、普遍的でプラグアンドプレイのアクセラレーションスキームである。
安定拡散 v2.1 では、AsyncDiff は2.7倍の速度アップと4.0倍のスピードアップを実現し、CLIPスコアの 0.38 をわずかに削減した。
我々の実験は、AsyncDiffがビデオ拡散モデルに容易に適用でき、性能を向上できることを示した。
論文 参考訳(メタデータ) (2024-06-11T03:09:37Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
ほとんどの復元ネットワークは遅く、高い計算ボトルネックがあり、リアルタイムビデオ拡張には使用できない。
本研究では,ライブビデオ通話やビデオストリームなどの実用的なユースケースをリアルタイムに拡張するための,効率的かつ高速なフレームワークを設計する。
提案手法を評価するために,実世界のビデオ通話とストリーミングのシナリオを示す2つの新しいデータセットをエミュレートし,ReBotNetがより少ない計算,メモリ要求の低減,より高速な推論時間で既存手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-03-23T17:58:05Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
PartIMEは、データが継続的にストリーミングされるたびにニューラルネットワークを高速化するように設計されたライブラリです。
PartIMEは、ストリームから利用可能になった時点で、各データサンプルの処理を開始する。
オンライン学習において、PartialIMEと古典的な非並列ニューラル計算を経験的に比較するために実験が行われる。
論文 参考訳(メタデータ) (2022-10-17T14:49:14Z) - Efficient Video Segmentation Models with Per-frame Inference [117.97423110566963]
推論のオーバーヘッドを導入することなく、時間的一貫性を改善することに注力する。
本稿では,時間的一貫性の喪失やオンライン/オフラインの知識蒸留手法など,ビデオシーケンスから学ぶためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2022-02-24T23:51:36Z) - OCSampler: Compressing Videos to One Clip with Single-step Sampling [82.0417131211353]
本稿では,OCSampler というフレームワークを提案する。
我々の基本的な動機は、効率的なビデオ認識タスクは、フレームをシーケンシャルに拾うのではなく、シーケンス全体を一度に処理することにある。
論文 参考訳(メタデータ) (2022-01-12T09:50:38Z) - Sequence Parallelism: Making 4D Parallelism Possible [10.08109995764072]
我々は、入力シーケンスの長さ制限を破り、GPU上で長いシーケンスでトレーニングするのに役立つシーケンス並列性を提案する。
リングオールリデューサにインスパイアされたリングスタイル通信と自己アテンション計算を統合し,リング自己アテンション(RSA)を提案する。
論文 参考訳(メタデータ) (2021-05-26T13:40:58Z) - Adaptive Focus for Efficient Video Recognition [29.615394426035074]
効率的な空間適応映像認識(AdaFocus)のための強化学習手法を提案する。
タスク関連領域をローカライズするために、リカレントポリシーネットワークによって使用されるフルビデオシーケンスを迅速に処理するために、軽量のConvNetが最初に採用された。
オフライン推論の間、情報パッチシーケンスが生成されると、計算の大部分を並列に行うことができ、現代のGPUデバイスで効率的である。
論文 参考訳(メタデータ) (2021-05-07T13:24:47Z) - Multi-Task Network Pruning and Embedded Optimization for Real-time
Deployment in ADAS [0.0]
カメラベースのディープラーニングアルゴリズムは、自動運転システムにおける認識にますます必要である。
自動車業界からの制約は、限られた計算リソースで組み込みシステムを課すことでCNNの展開に挑戦します。
商用プロトタイププラットフォーム上で,このような条件下でマルチタスクCNNネットワークを埋め込む手法を提案する。
論文 参考訳(メタデータ) (2021-01-19T19:29:38Z) - Efficient Video Semantic Segmentation with Labels Propagation and
Refinement [138.55845680523908]
本稿では,ハイブリッドGPU/CPUを用いた高精細ビデオのリアルタイムセマンティックセマンティックセマンティック化の問題に取り組む。
i) CPU上では、非常に高速な光フロー法であり、ビデオの時間的側面を利用して、あるフレームから次のフレームへ意味情報を伝達するために使用される。
高解像度フレーム(2048 x 1024)を持つ一般的なCityscapesデータセットでは、単一のGPUとCPU上で80から1000Hzの動作ポイントが提案されている。
論文 参考訳(メタデータ) (2019-12-26T11:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。