論文の概要: Learning and Evaluating Human Preferences for Conversational Head
Generation
- arxiv url: http://arxiv.org/abs/2307.10636v2
- Date: Wed, 2 Aug 2023 04:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 17:14:57.689905
- Title: Learning and Evaluating Human Preferences for Conversational Head
Generation
- Title(参考訳): 会話型頭部生成における人間の好みの学習と評価
- Authors: Mohan Zhou, Yalong Bai, Wei Zhang, Ting Yao, Tiejun Zhao, Tao Mei
- Abstract要約: そこで我々は,異なる次元の定量的評価に基づいて,人間の嗜好を適合させる学習ベース評価尺度であるPreference Score(PS)を提案する。
PSは人間のアノテーションを必要とせずに定量的評価を行うことができる。
- 参考スコア(独自算出の注目度): 101.89332968344102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reliable and comprehensive evaluation metric that aligns with manual
preference assessments is crucial for conversational head video synthesis
methods development. Existing quantitative evaluations often fail to capture
the full complexity of human preference, as they only consider limited
evaluation dimensions. Qualitative evaluations and user studies offer a
solution but are time-consuming and labor-intensive. This limitation hinders
the advancement of conversational head generation algorithms and systems. In
this paper, we propose a novel learning-based evaluation metric named
Preference Score (PS) for fitting human preference according to the
quantitative evaluations across different dimensions. PS can serve as a
quantitative evaluation without the need for human annotation. Experimental
results validate the superiority of Preference Score in aligning with human
perception, and also demonstrate robustness and generalizability to unseen
data, making it a valuable tool for advancing conversation head generation. We
expect this metric could facilitate new advances in conversational head
generation. Project Page: https://https://github.com/dc3ea9f/PreferenceScore.
- Abstract(参考訳): 手動による選好評価と整合する信頼性と総合的な評価基準は,対話型頭部ビデオ合成法の開発に不可欠である。
既存の定量的評価は、限られた評価次元のみを考慮するため、人間の嗜好の完全な複雑さを捉えるのに失敗することが多い。
質的評価とユーザスタディはソリューションを提供するが、時間と労力がかかる。
この制限は対話型ヘッド生成アルゴリズムやシステムの進歩を妨げる。
本稿では,異なる次元にわたる定量的評価に基づいて,人間の嗜好を適合させるための学習ベース評価尺度であるPreference Score(PS)を提案する。
PSは人間のアノテーションを必要とせずに定量的評価を行うことができる。
実験の結果,人間の知覚と整合する選好スコアの優位性が検証され,非知覚データに対するロバスト性と一般化性が示され,会話ヘッド生成に有用なツールとなった。
この指標が会話型ヘッドジェネレーションの新たな進歩を促進すると期待しています。
プロジェクトページ: https://github.com/dc3ea9f/PreferenceScore
関連論文リスト
- A Comparative Study of Perceptual Quality Metrics for Audio-driven
Talking Head Videos [81.54357891748087]
4つの生成手法から生成した音声ヘッドビデオを収集する。
視覚的品質、口唇音の同期、頭部運動の自然性に関する制御された心理物理実験を行った。
実験では,モデル予測と人間のアノテーションの整合性を検証し,広く使用されている指標よりも人的意見に整合した指標を同定した。
論文 参考訳(メタデータ) (2024-03-11T04:13:38Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
要約のための既存の人間の評価研究は、アノテータ間の合意が低かったり、スケールが不十分だったりしている。
細粒度セマンティック・ユニットをベースとした改良された要約サリエンス・プロトコルであるAtomic Content Units (ACUs)を提案する。
ロバスト・サムライゼーション・アセスメント(RoSE)ベンチマークは,28の上位性能システム上で22,000の要約レベルのアノテーションからなる大規模な人的評価データセットである。
論文 参考訳(メタデータ) (2022-12-15T17:26:05Z) - Dynamic Human Evaluation for Relative Model Comparisons [8.843915018287476]
本研究では,相対的な比較設定で生成した出力を評価する際に,人間のアノテーションの必要個数を動的に測定する手法を提案する。
シミュレーションとクラウドソーシングのケーススタディにおいて,より優れたモデルを決定するための複数のラベル付け戦略と手法を評価するために,人間評価のエージェントベースフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:32:13Z) - Human Evaluation of Creative NLG Systems: An Interdisciplinary Survey on
Recent Papers [0.685316573653194]
創造的な自然言語生成に関する論文の中で,人間の評価について調査する。
最も典型的な人間の評価法は、通常5点の尺度で、スケールされたサーベイである。
最もよく評価されるパラメータは、意味、統語的正しさ、新規性、関連性、感情的価値である。
論文 参考訳(メタデータ) (2021-07-31T18:54:30Z) - Towards Quantifiable Dialogue Coherence Evaluation [126.55560816209756]
量的対話コヒーレンス評価(QuantiDCE)は,量的対話コヒーレンス尺度の学習を目的とした新しいフレームワークである。
QuantiDCEには、Multi-Level Ranking (MLR) pre-training (KD) fine-tuning (Multi-Level Ranking)とKD (KD) fine-tuning (KD) という2つの訓練段階が含まれている。
実験結果から,QuantiDCEによりトレーニングされたモデルは,他の最先端の指標に比べて,人間の判断と強い相関関係を示すことが示された。
論文 参考訳(メタデータ) (2021-06-01T14:11:17Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - What comprises a good talking-head video generation?: A Survey and
Benchmark [40.26689818789428]
本稿では,標準化されたデータセット前処理戦略を用いた対話型ビデオ生成の評価ベンチマークを提案する。
提案手法は,対話型ビデオに望ましい特性とみなす結果を評価するために,新しい指標を提案するか,最も適した指標を選択する。
論文 参考訳(メタデータ) (2020-05-07T01:58:05Z) - Designing Precise and Robust Dialogue Response Evaluators [35.137244385158034]
我々は,参照自由評価器を構築し,半教師付きトレーニングと事前訓練言語モデルのパワーを活用することを提案する。
実験結果から,提案した評価器は人的判断と強い相関(>0.6)を達成できることが示された。
論文 参考訳(メタデータ) (2020-04-10T04:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。