論文の概要: Learned Thresholds Token Merging and Pruning for Vision Transformers
- arxiv url: http://arxiv.org/abs/2307.10780v1
- Date: Thu, 20 Jul 2023 11:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 13:30:03.731904
- Title: Learned Thresholds Token Merging and Pruning for Vision Transformers
- Title(参考訳): 視覚トランスフォーマーの学習しきい値トークンのマージとプルーニング
- Authors: Maxim Bonnaerens, Joni Dambre
- Abstract要約: 本稿では,トークンマージとトークンプルーニングの両方の長所を活用する新しいアプローチであるLTMP(Learned Thresholds token Merging and Pruning)を紹介する。
我々は、ImageNet分類タスクにおいて、視覚変換器に関する広範な実験を行い、我々のアプローチを実証する。
- 参考スコア(独自算出の注目度): 6.652647183500079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision transformers have demonstrated remarkable success in a wide range of
computer vision tasks over the last years. However, their high computational
costs remain a significant barrier to their practical deployment. In
particular, the complexity of transformer models is quadratic with respect to
the number of input tokens. Therefore techniques that reduce the number of
input tokens that need to be processed have been proposed. This paper
introduces Learned Thresholds token Merging and Pruning (LTMP), a novel
approach that leverages the strengths of both token merging and token pruning.
LTMP uses learned threshold masking modules that dynamically determine which
tokens to merge and which to prune. We demonstrate our approach with extensive
experiments on vision transformers on the ImageNet classification task. Our
results demonstrate that LTMP achieves state-of-the-art accuracy across
reduction rates while requiring only a single fine-tuning epoch, which is an
order of magnitude faster than previous methods. Code is available at
https://github.com/Mxbonn/ltmp .
- Abstract(参考訳): ビジョントランスフォーマーは、過去数年間、幅広いコンピュータビジョンタスクで顕著な成功を収めてきた。
しかし、それらの高い計算コストは、実際の展開にとって重要な障壁である。
特に、トランスフォーマーモデルの複雑さは、入力トークンの数に関して二次的である。
そのため、処理が必要な入力トークンの数を減らす技術が提案されている。
本稿では,トークンマージとトークンプルーニングの両方の長所を活用する新しいアプローチであるLTMP(Learned Thresholds token Merging and Pruning)を紹介する。
LTMPは学習しきい値マスキングモジュールを使用して、マージするトークンとプルーするトークンを動的に決定する。
我々は、ImageNet分類タスクにおいて、視覚変換器に関する広範な実験を行った。
以上の結果から,LTMPは従来の手法よりも桁違いに高速な1つの微調整エポックしか必要とせず,縮小速度をまたいで最先端の精度を達成できることが示唆された。
コードはhttps://github.com/Mxbonn/ltmpで入手できる。
関連論文リスト
- Transformer based Pluralistic Image Completion with Reduced Information Loss [72.92754600354199]
トランスフォーマーをベースとした手法は,近年,イメージインペイントにおいて大きな成功を収めている。
彼らは各ピクセルをトークンとみなし、情報損失の問題に悩まされる。
我々はPUTと呼ばれる新しいトランスフォーマーベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T01:20:16Z) - MADTP: Multimodal Alignment-Guided Dynamic Token Pruning for
Accelerating Vision-Language Transformer [66.71930982549028]
VLT(Vision-Language Transformer)は近年大きな成功を収めている。
各種VLTの高速化を目的としたマルチモーダルアライメント誘導動的トーケンプルーニング(MADTP)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-05T14:13:50Z) - Token Fusion: Bridging the Gap between Token Pruning and Token Merging [71.84591084401458]
ビジョントランスフォーマー(ViT)はコンピュータビジョンの強力なバックボーンとして登場し、多くの伝統的なCNNを上回っている。
計算オーバーヘッドは、主に自己アテンション機構によるもので、リソース制約のあるエッジデバイスへのデプロイが困難になる。
トークンプルーニングとトークンマージの両方のメリットを両立させる手法であるToken Fusion(ToFu)を紹介する。
論文 参考訳(メタデータ) (2023-12-02T04:29:19Z) - Mitigating Over-smoothing in Transformers via Regularized Nonlocal
Functionals [31.328766460487355]
変圧器の自己保持層は, 平滑化を促進する機能を最小限に抑え, トークンの均一性をもたらすことを示す。
本稿では, 自己注意からのスムーズな出力トークンと入力トークンとの差分を正規化して, トークンの忠実性を維持するための新たな正規化器を提案する。
我々は,トークン表現の過度な平滑化を低減するために,ベースライントランスフォーマーと最先端手法に対するNeuTRENOの利点を実証的に実証した。
論文 参考訳(メタデータ) (2023-12-01T17:52:47Z) - CageViT: Convolutional Activation Guided Efficient Vision Transformer [90.69578999760206]
本稿では,CageViTと呼ばれる効率的な視覚変換器を提案する。
私たちのCageViTは、現在のTransformersとは違って、新しいエンコーダを使用して、再配置されたトークンを処理する。
実験の結果,提案したCageViTは最新の最先端のバックボーンよりも効率の面で大きな差があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T03:19:18Z) - Expediting Large-Scale Vision Transformer for Dense Prediction without
Fine-tuning [28.180891300826165]
大規模視覚変換器におけるトークンの総数を削減するために、多くの先進的なアプローチが開発されている。
2つの非パラメトリック演算子、トークン数を減らすトークンクラスタリング層、トークン数を増やすトークン再構成層を提供する。
その結果、オブジェクト検出、セマンティックセグメンテーション、パノスコープセグメンテーション、インスタンスセグメンテーション、深さ推定を含む5つの密集した予測タスクが期待できる。
論文 参考訳(メタデータ) (2022-10-03T15:49:48Z) - Multi-Tailed Vision Transformer for Efficient Inference [44.43126137573205]
Vision Transformer (ViT) は画像認識において有望な性能を達成した。
本稿では,MT-ViT(Multi-Tailed Vision Transformer)を提案する。
MT-ViTは、以下のTransformerエンコーダのために異なる長さの視覚シーケンスを生成するために複数のテールを採用する。
論文 参考訳(メタデータ) (2022-03-03T09:30:55Z) - Learned Token Pruning for Transformers [39.181816379061374]
Learned Token Pruning ()メソッドは、データがトランスフォーマーの異なるレイヤを通過すると、冗長なトークンを減らす。
複数のGLUEタスクに対して,提案手法の性能を広範囲に検証する。
予備的な結果はTesla T4とIntel Haswellの1.4倍と1.9倍のスループット向上を示す。
論文 参考訳(メタデータ) (2021-07-02T09:00:13Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z) - CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
Classification [17.709880544501758]
異なるサイズの画像パッチを組み合わせて、より強力な画像特徴を生成するデュアルブランチトランスを提案します。
我々のアプローチは、異なる計算複雑性の2つの別々の分岐を持つ小さなパッチトークンと大きなパッチトークンを処理します。
私たちの提案するクロスアテンションは、計算とメモリの複雑さの両方に線形時間しか必要としない。
論文 参考訳(メタデータ) (2021-03-27T13:03:17Z) - Addressing Some Limitations of Transformers with Feedback Memory [51.94640029417114]
トランスフォーマーは、フィードフォワードネットワークであるにもかかわらず、シーケンシャルな自動回帰タスクにうまく適用されている。
本稿では、過去のすべての表現を将来のすべての表現に公開する、フィードバックトランスフォーマーアーキテクチャを提案する。
言語モデリング、機械翻訳、強化学習の様々なベンチマークにおいて、表現能力の増大は、同等のトランスフォーマーよりもはるかに強力なパフォーマンスを持つ、小さくて浅いモデルを生成することができることを実証する。
論文 参考訳(メタデータ) (2020-02-21T16:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。