SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with
4D Imaging Radar
- URL: http://arxiv.org/abs/2307.10784v3
- Date: Thu, 5 Oct 2023 07:43:33 GMT
- Title: SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with
4D Imaging Radar
- Authors: Jianan Liu, Qiuchi Zhao, Weiyi Xiong, Tao Huang, Qing-Long Han, Bing
Zhu
- Abstract summary: This paper introduces spatial multi-representation fusion (SMURF), a novel approach to 3D object detection using a single 4D imaging radar.
SMURF mitigates measurement inaccuracy caused by limited angular resolution and multi-path propagation of radar signals.
Experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of SMURF.
- Score: 12.842457981088378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 4D Millimeter wave (mmWave) radar is a promising technology for vehicle
sensing due to its cost-effectiveness and operability in adverse weather
conditions. However, the adoption of this technology has been hindered by
sparsity and noise issues in radar point cloud data. This paper introduces
spatial multi-representation fusion (SMURF), a novel approach to 3D object
detection using a single 4D imaging radar. SMURF leverages multiple
representations of radar detection points, including pillarization and density
features of a multi-dimensional Gaussian mixture distribution through kernel
density estimation (KDE). KDE effectively mitigates measurement inaccuracy
caused by limited angular resolution and multi-path propagation of radar
signals. Additionally, KDE helps alleviate point cloud sparsity by capturing
density features. Experimental evaluations on View-of-Delft (VoD) and
TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of
SMURF, outperforming recently proposed 4D imaging radar-based
single-representation models. Moreover, while using 4D imaging radar only,
SMURF still achieves comparable performance to the state-of-the-art 4D imaging
radar and camera fusion-based method, with an increase of 1.22% in the mean
average precision on bird's-eye view of TJ4DRadSet dataset and 1.32% in the 3D
mean average precision on the entire annotated area of VoD dataset. Our
proposed method demonstrates impressive inference time and addresses the
challenges of real-time detection, with the inference time no more than 0.05
seconds for most scans on both datasets. This research highlights the benefits
of 4D mmWave radar and is a strong benchmark for subsequent works regarding 3D
object detection with 4D imaging radar.
Related papers
- MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving [9.184945917823047]
We present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera.
MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the View-of-Delft (VoD) and TJ4DRadset datasets.
It even surpasses classical LiDAR-based methods on the VoD dataset.
arXiv Detail & Related papers (2024-11-22T15:45:23Z) - V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion [43.55805087515543]
We present V2X-R, the first simulated V2X dataset incorporating LiDAR, camera, and 4D radar.
V2X-R contains 12,079 scenarios with 37,727 frames of LiDAR and 4D radar point clouds, 150,908 images, and 170,859 annotated 3D vehicle bounding boxes.
We propose a novel cooperative LiDAR-4D radar fusion pipeline for 3D object detection and implement it with various fusion strategies.
arXiv Detail & Related papers (2024-11-13T07:41:47Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D occupancy-based perception pipeline has significantly advanced autonomous driving.
Current methods rely on LiDAR or camera inputs for 3D occupancy prediction.
We introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction.
arXiv Detail & Related papers (2024-05-22T21:48:17Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - ThermRad: A Multi-modal Dataset for Robust 3D Object Detection under
Challenging Conditions [15.925365473140479]
We present a new multi-modal dataset called ThermRad, which includes a 3D LiDAR, a 4D radar, an RGB camera and a thermal camera.
We propose a new multi-modal fusion method called RTDF-RCNN, which leverages the complementary strengths of 4D radars and thermal cameras to boost object detection performance.
Our method achieves significant enhancements in detecting cars, pedestrians, and cyclists, with improvements of over 7.98%, 24.27%, and 27.15%, respectively.
arXiv Detail & Related papers (2023-08-20T04:34:30Z) - 4DRVO-Net: Deep 4D Radar-Visual Odometry Using Multi-Modal and
Multi-Scale Adaptive Fusion [2.911052912709637]
Four-dimensional (4D) radar--visual odometry (4DRVO) integrates complementary information from 4D radar and cameras.
4DRVO may exhibit significant tracking errors owing to sparsity of 4D radar point clouds.
We present 4DRVO-Net, which is a method for 4D radar--visual odometry.
arXiv Detail & Related papers (2023-08-12T14:00:09Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.