OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured
Traffic Scenarios
- URL: http://arxiv.org/abs/2307.10934v1
- Date: Thu, 20 Jul 2023 15:06:44 GMT
- Title: OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured
Traffic Scenarios
- Authors: Aditya Nalgunda Ganesh and Dhruval Pobbathi Badrinath and Harshith
Mohan Kumar and Priya SS and Surabhi Narayan
- Abstract summary: We propose OCTraN, a transformer architecture that uses iterative-attention to convert 2D image features into 3D occupancy features.
We also develop a self-supervised training pipeline to generalize the model to any scene by eliminating the need for LiDAR ground truth.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern approaches for vision-centric environment perception for autonomous
navigation make extensive use of self-supervised monocular depth estimation
algorithms that output disparity maps. However, when this disparity map is
projected onto 3D space, the errors in disparity are magnified, resulting in a
depth estimation error that increases quadratically as the distance from the
camera increases. Though Light Detection and Ranging (LiDAR) can solve this
issue, it is expensive and not feasible for many applications. To address the
challenge of accurate ranging with low-cost sensors, we propose, OCTraN, a
transformer architecture that uses iterative-attention to convert 2D image
features into 3D occupancy features and makes use of convolution and transpose
convolution to efficiently operate on spatial information. We also develop a
self-supervised training pipeline to generalize the model to any scene by
eliminating the need for LiDAR ground truth by substituting it with
pseudo-ground truth labels obtained from boosted monocular depth estimation.
Related papers
- Robust 3D Semantic Occupancy Prediction with Calibration-free Spatial Transformation [32.50849425431012]
For autonomous cars equipped with multi-camera and LiDAR, it is critical to aggregate multi-sensor information into a unified 3D space for accurate and robust predictions.
Recent methods are mainly built on the 2D-to-3D transformation that relies on sensor calibration to project the 2D image information into the 3D space.
In this work, we propose a calibration-free spatial transformation based on vanilla attention to implicitly model the spatial correspondence.
arXiv Detail & Related papers (2024-11-19T02:40:42Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Neural Rendering based Urban Scene Reconstruction for Autonomous Driving [8.007494499012624]
We propose a multimodal 3D scene reconstruction using a framework combining neural implicit surfaces and radiance fields.
Dense 3D reconstruction has many applications in automated driving including automated annotation validation.
We demonstrate qualitative and quantitative results on challenging automotive scenes.
arXiv Detail & Related papers (2024-02-09T23:20:23Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.