Proxy Anchor-based Unsupervised Learning for Continuous Generalized
Category Discovery
- URL: http://arxiv.org/abs/2307.10943v2
- Date: Thu, 2 Nov 2023 17:41:05 GMT
- Title: Proxy Anchor-based Unsupervised Learning for Continuous Generalized
Category Discovery
- Authors: Hyungmin Kim, Sungho Suh, Daehwan Kim, Daun Jeong, Hansang Cho, Junmo
Kim
- Abstract summary: We propose a novel unsupervised class incremental learning approach for discovering novel categories on unlabeled sets.
The proposed method fine-tunes the feature extractor and proxy anchors on labeled sets, then splits samples into old and novel categories and clusters on the unlabeled dataset.
Experimental results demonstrate that our proposed approach outperforms the state-of-the-art methods on fine-grained datasets under real-world scenarios.
- Score: 22.519873617950662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning have significantly improved the performance
of various computer vision applications. However, discovering novel categories
in an incremental learning scenario remains a challenging problem due to the
lack of prior knowledge about the number and nature of new categories. Existing
methods for novel category discovery are limited by their reliance on labeled
datasets and prior knowledge about the number of novel categories and the
proportion of novel samples in the batch. To address the limitations and more
accurately reflect real-world scenarios, in this paper, we propose a novel
unsupervised class incremental learning approach for discovering novel
categories on unlabeled sets without prior knowledge. The proposed method
fine-tunes the feature extractor and proxy anchors on labeled sets, then splits
samples into old and novel categories and clusters on the unlabeled dataset.
Furthermore, the proxy anchors-based exemplar generates representative category
vectors to mitigate catastrophic forgetting. Experimental results demonstrate
that our proposed approach outperforms the state-of-the-art methods on
fine-grained datasets under real-world scenarios.
Related papers
- Liberating Seen Classes: Boosting Few-Shot and Zero-Shot Text Classification via Anchor Generation and Classification Reframing [38.84431954053434]
Few-shot and zero-shot text classification aim to recognize samples from novel classes with limited labeled samples or no labeled samples at all.
We propose a simple and effective strategy for few-shot and zero-shot text classification.
arXiv Detail & Related papers (2024-05-06T15:38:32Z) - Zero-Knowledge Zero-Shot Learning for Novel Visual Category Discovery [20.37459249095808]
We propose a new problem setting named Zero-Knowledge Zero-Shot Learning (ZK-ZSL)
ZK-ZSL assumes no prior knowledge of novel classes and aims to classify seen and unseen samples.
We show that our method's superior performance in classification and semantic recovery on four benchmark datasets.
arXiv Detail & Related papers (2023-02-09T03:40:50Z) - Fine-grained Category Discovery under Coarse-grained supervision with
Hierarchical Weighted Self-contrastive Learning [37.6512548064269]
We investigate a new practical scenario called Fine-grained Category Discovery under Coarse-grained supervision (FCDC)
FCDC aims at discovering fine-grained categories with only coarse-grained labeled data, which can adapt models to categories of different granularity from known ones and reduce significant labeling cost.
We propose a hierarchical weighted self-contrastive network by building a novel weighted self-contrastive module and combining it with supervised learning in a hierarchical manner.
arXiv Detail & Related papers (2022-10-14T12:06:23Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Novel Class Discovery without Forgetting [72.52222295216062]
We identify and formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery without Forgetting.
We propose a machine learning model to incrementally discover novel categories of instances from unlabeled data.
We introduce experimental protocols based on CIFAR-10, CIFAR-100 and ImageNet-1000 to measure the trade-off between knowledge retention and novel class discovery.
arXiv Detail & Related papers (2022-07-21T17:54:36Z) - Class-incremental Novel Class Discovery [76.35226130521758]
We study the new task of class-incremental Novel Class Discovery (class-iNCD)
We propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes.
Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-18T13:49:27Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
We are interested in identifying novel concepts in a dataset through representation learning based on the examples in both labeled and unlabeled classes.
We propose a learning approach, which naturally clusters examples in unseen classes using the compositional knowledge given by multiple supervised meta-classifiers on heterogeneous label spaces.
The proposed algorithm discovers novel concepts via a joint optimization of enhancing the discrimitiveness of unseen classes as well as learning the representations of known classes generalizable to novel ones.
arXiv Detail & Related papers (2021-06-29T11:51:57Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.