論文の概要: Learning Dense UV Completion for Human Mesh Recovery
- arxiv url: http://arxiv.org/abs/2307.11074v1
- Date: Thu, 20 Jul 2023 17:53:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 11:38:35.747835
- Title: Learning Dense UV Completion for Human Mesh Recovery
- Title(参考訳): 人間のメッシュ回復のための高密度紫外線コンプリート学習
- Authors: Yanjun Wang, Qingping Sun, Wenjia Wang, Jun Ling, Zhongang Cai, Rong
Xie, Li Song
- Abstract要約: 既存の手法では、人間の特徴を正確に区別したり、機能補完の適切な監督を欠いている。
本手法は、高密度対応マップを用いて、可視的特徴を分離し、高密度なUVマップ上での人間の特徴を補完する。
また、未使用の機能から学習するためのネットワークを誘導する機能拡張訓練手順を設計する。
- 参考スコア(独自算出の注目度): 17.164620889454334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human mesh reconstruction from a single image is challenging in the presence
of occlusion, which can be caused by self, objects, or other humans. Existing
methods either fail to separate human features accurately or lack proper
supervision for feature completion. In this paper, we propose Dense Inpainting
Human Mesh Recovery (DIMR), a two-stage method that leverages dense
correspondence maps to handle occlusion. Our method utilizes a dense
correspondence map to separate visible human features and completes human
features on a structured UV map dense human with an attention-based feature
completion module. We also design a feature inpainting training procedure that
guides the network to learn from unoccluded features. We evaluate our method on
several datasets and demonstrate its superior performance under heavily
occluded scenarios compared to other methods. Extensive experiments show that
our method obviously outperforms prior SOTA methods on heavily occluded images
and achieves comparable results on the standard benchmarks (3DPW).
- Abstract(参考訳): 単一画像からの人間のメッシュ再構築は、自己や物体、あるいは他の人間によって引き起こされるオクルージョンの存在下では困難である。
既存の手法では、人間の特徴を正確に分離できないか、機能補完のための適切な監督を欠いている。
本稿では,密接な対応地図を利用して閉塞処理を行う2段階の手法であるDense Inpainting Human Mesh Recovery (DIMR)を提案する。
提案手法は,高密度対応マップを用いて視覚的特徴を分離し,注目機能補完モジュールを用いた高密度UVマップ上での人間の特徴を補完する。
また、未使用の機能から学習するためのネットワークを誘導する機能拡張訓練手順を設計する。
提案手法を複数のデータセット上で評価し,その性能を他の手法と比較した。
広汎な実験により,従来のSOTA法よりも高い性能を示し,標準ベンチマーク(3DPW)において同等の結果が得られた。
関連論文リスト
- Divide and Fuse: Body Part Mesh Recovery from Partially Visible Human Images [57.479339658504685]
ディバイドとフューズ」戦略は、人体部分を融合する前に独立して再構築する。
Human Part Parametric Models (HPPM) は、いくつかの形状とグローバルな位置パラメータからメッシュを独立に再構築する。
特別に設計された融合モジュールは、一部しか見えない場合でも、再建された部品をシームレスに統合する。
論文 参考訳(メタデータ) (2024-07-12T21:29:11Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMeshは、人間のメッシュリカバリを排除した革新的なフレームワークである。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルに埋め込まれた対象構造と空間的関係について、より深い拡散に乗じる。
論文 参考訳(メタデータ) (2024-04-01T18:59:13Z) - AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
人間のポーズと形状の復元のための新しいオールインワンステージフレームワークであるAiOSを、追加の人間検出ステップなしで導入する。
まず、画像中の人間の位置を探索し、各インスタンスのグローバルな機能をエンコードするために、人間のトークンを使用します。
そして、画像中の人間の関節を探索し、きめ細かい局所的特徴を符号化するジョイント関連トークンを導入する。
論文 参考訳(メタデータ) (2024-03-26T17:59:23Z) - 2D Human Pose Estimation with Explicit Anatomical Keypoints Structure
Constraints [15.124606575017621]
本稿では,解剖学的キーポイント構造制約を明示した新しい2次元ポーズ推定手法を提案する。
提案手法は,既存のボトムアップやトップダウンの人間のポーズ推定手法に組み込むことができる。
提案手法は,既存のボトムアップとトップダウンの人間のポーズ推定手法に対して良好に機能する。
論文 参考訳(メタデータ) (2022-12-05T11:01:43Z) - Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation [33.86986028882488]
咬合は, 咬合者の形状, 外観, 位置の変動が大きいため, 単眼多面体3次元ポーズ推定において大きな脅威となる。
既存のメソッドは、ポーズ先/制約、データ拡張、暗黙の推論でオクルージョンを処理しようとする。
本研究では、ボトムアップ型多人数ポーズ推定を大幅に改善する、このプロセスを明示的にモデル化する手法を開発した。
論文 参考訳(メタデータ) (2022-07-29T22:12:50Z) - KTN: Knowledge Transfer Network for Learning Multi-person 2D-3D
Correspondences [77.56222946832237]
画像中の複数の人物の密着度を検出するための新しい枠組みを提案する。
提案手法は知識伝達ネットワーク(KTN)の2つの問題に対処する。
特徴解像度を同時に維持し、背景画素を抑圧し、この戦略は精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-06-21T03:11:37Z) - Virtual Multi-Modality Self-Supervised Foreground Matting for
Human-Object Interaction [18.14237514372724]
本稿では,仮想マルチモーダル・フォアグラウンド・マッティング(VMFM)手法を提案する。
VMFMメソッドはトリマップや既知のバックグラウンドなどの追加入力を必要としない。
我々は,前景マッティングを自己監督型マルチモーダリティ問題として再構成する。
論文 参考訳(メタデータ) (2021-10-07T09:03:01Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
入力RGB画像から3次元のポーズと形状を復元するディープニューラルネットワーク手法を提案する。
我々は最近導入された表現力のあるボディ統計モデルGHUMに頼っている。
我々の方法論の中心は、HUmanNeural Descent (HUND)と呼ばれるアプローチの学習と最適化である。
論文 参考訳(メタデータ) (2020-08-16T13:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。