CSSL-RHA: Contrastive Self-Supervised Learning for Robust Handwriting
Authentication
- URL: http://arxiv.org/abs/2307.11100v1
- Date: Tue, 18 Jul 2023 02:20:46 GMT
- Title: CSSL-RHA: Contrastive Self-Supervised Learning for Robust Handwriting
Authentication
- Authors: Jingyao Wang, Luntian Mou, Changwen Zheng, Wen Gao
- Abstract summary: We propose a novel Contrastive Self-Supervised Learning framework for Robust Handwriting Authentication.
It can dynamically learn complex yet important features and accurately predict writer identities.
Our proposed model can still effectively achieve authentication even under abnormal circumstances, such as data falsification and corruption.
- Score: 23.565017967901618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handwriting authentication is a valuable tool used in various fields, such as
fraud prevention and cultural heritage protection. However, it remains a
challenging task due to the complex features, severe damage, and lack of
supervision. In this paper, we propose a novel Contrastive Self-Supervised
Learning framework for Robust Handwriting Authentication (CSSL-RHA) to address
these issues. It can dynamically learn complex yet important features and
accurately predict writer identities. Specifically, to remove the negative
effects of imperfections and redundancy, we design an information-theoretic
filter for pre-processing and propose a novel adaptive matching scheme to
represent images as patches of local regions dominated by more important
features. Through online optimization at inference time, the most informative
patch embeddings are identified as the "most important" elements. Furthermore,
we employ contrastive self-supervised training with a momentum-based paradigm
to learn more general statistical structures of handwritten data without
supervision. We conduct extensive experiments on five benchmark datasets and
our manually annotated dataset EN-HA, which demonstrate the superiority of our
CSSL-RHA compared to baselines. Additionally, we show that our proposed model
can still effectively achieve authentication even under abnormal circumstances,
such as data falsification and corruption.
Related papers
- Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - Decorrelation-based Self-Supervised Visual Representation Learning for Writer Identification [10.55096104577668]
We explore the decorrelation-based paradigm of self-supervised learning and apply the same to learning disentangled stroke features for writer identification.
We show that the proposed framework outperforms the contemporary self-supervised learning framework on the writer identification benchmark.
To the best of our knowledge, this work is the first of its kind to apply self-supervised learning for learning representations for writer verification tasks.
arXiv Detail & Related papers (2024-10-02T11:43:58Z) - Image-based Freeform Handwriting Authentication with Energy-oriented Self-Supervised Learning [17.584355583447323]
SherlockNet is an energy-oriented two-branch contrastive self-supervised learning framework for robust and fast freeform handwriting authentication.
We construct EN-HA, a novel dataset that simulates data forgery and severe damage in real applications.
arXiv Detail & Related papers (2024-08-19T03:33:39Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
Graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings.
To address these concerns, privacy-preserving graph embedding methods have emerged.
We propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term.
arXiv Detail & Related papers (2023-08-16T13:32:43Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - Disentangled Text Representation Learning with Information-Theoretic
Perspective for Adversarial Robustness [17.5771010094384]
Adversarial vulnerability remains a major obstacle to constructing reliable NLP systems.
Recent work argues the adversarial vulnerability of the model is caused by the non-robust features in supervised training.
In this paper, we tackle the adversarial challenge from the view of disentangled representation learning.
arXiv Detail & Related papers (2022-10-26T18:14:39Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - SURDS: Self-Supervised Attention-guided Reconstruction and Dual Triplet
Loss for Writer Independent Offline Signature Verification [16.499360910037904]
Offline Signature Verification (OSV) is a fundamental biometric task across various forensic, commercial and legal applications.
We propose a two-stage deep learning framework that leverages self-supervised representation learning as well as metric learning for writer-independent OSV.
The proposed framework has been evaluated on two publicly available offline signature datasets and compared with various state-of-the-art methods.
arXiv Detail & Related papers (2022-01-25T07:26:55Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.