Jina Embeddings: A Novel Set of High-Performance Sentence Embedding
Models
- URL: http://arxiv.org/abs/2307.11224v3
- Date: Fri, 20 Oct 2023 14:09:36 GMT
- Title: Jina Embeddings: A Novel Set of High-Performance Sentence Embedding
Models
- Authors: Michael G\"unther, Louis Milliken, Jonathan Geuter, Georgios
Mastrapas, Bo Wang, Han Xiao
- Abstract summary: Jina Embeddings constitutes a set of high-performance sentence embedding models adept at translating textual inputs into numerical representations.
This paper details the development of Jina Embeddings, starting with the creation of high-quality pairwise and triplet datasets.
It concludes with a comprehensive performance evaluation using the Massive Text Embedding Benchmark (MTEB)
- Score: 4.451741472324815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Jina Embeddings constitutes a set of high-performance sentence embedding
models adept at translating textual inputs into numerical representations,
capturing the semantics of the text. These models excel in applications like
dense retrieval and semantic textual similarity. This paper details the
development of Jina Embeddings, starting with the creation of high-quality
pairwise and triplet datasets. It underlines the crucial role of data cleaning
in dataset preparation, offers in-depth insights into the model training
process, and concludes with a comprehensive performance evaluation using the
Massive Text Embedding Benchmark (MTEB). Furthermore, to increase the model's
awareness of grammatical negation, we construct a novel training and evaluation
dataset of negated and non-negated statements, which we make publicly available
to the community.
Related papers
- Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using datasets like NLI.
Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency.
We propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence.
Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
arXiv Detail & Related papers (2025-02-19T12:07:53Z) - Empirical Evaluation of Embedding Models in the Context of Text Classification in Document Review in Construction Delay Disputes [6.076874513889027]
Text embeddings are numerical representations of text data, where words, phrases, or entire documents are converted into vectors of real numbers.
This paper presents our work in evaluating different embeddings through a comprehensive comparative analysis of four distinct models.
We employ both K-Nearest Neighbors (KNN) and Logistic Regression (LR) to perform binary classification tasks, specifically determining whether a text snippet is associated with 'delay' or 'not delay' within a labeled dataset.
arXiv Detail & Related papers (2025-01-16T22:12:11Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - GASE: Generatively Augmented Sentence Encoding [0.0]
We propose an approach to enhance sentence embeddings by applying generative text models for data augmentation at inference time.
Generatively Augmented Sentence uses diverse synthetic variants of input texts generated by paraphrasing, summarising or extracting keywords.
We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance.
arXiv Detail & Related papers (2024-11-07T17:53:47Z) - Ensembling Finetuned Language Models for Text Classification [55.15643209328513]
Finetuning is a common practice across different communities to adapt pretrained models to particular tasks.
ensembles of neural networks are typically used to boost performance and provide reliable uncertainty estimates.
We present a metadataset with predictions from five large finetuned models on six datasets and report results of different ensembling strategies.
arXiv Detail & Related papers (2024-10-25T09:15:54Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Enhancing Embedding Performance through Large Language Model-based Text Enrichment and Rewriting [0.0]
This paper proposes a novel approach to improve embedding performance by leveraging large language models (LLMs) to enrich and rewrite input text before the embedding process.
The effectiveness of this approach is evaluated on three datasets: Banking77Classification, TwitterSemEval 2015, and Amazon Counter-factual Classification.
arXiv Detail & Related papers (2024-04-18T15:58:56Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
Adverse Event (ADE) extraction is one of the core tasks in digital pharmacovigilance.
We evaluate 19 Transformer-based models for ADE extraction on informal texts.
At the end of our analyses, we identify a list of take-home messages that can be derived from the experimental data.
arXiv Detail & Related papers (2023-06-08T15:25:24Z) - Tracing Origins: Coref-aware Machine Reading Comprehension [43.352833140317486]
We imitated the human's reading process in connecting the anaphoric expressions and leverage the coreference information to enhance the word embeddings from the pre-trained model.
We demonstrated that the explicit incorporation of the coreference information in fine-tuning stage performed better than the incorporation of the coreference information in training a pre-trained language models.
arXiv Detail & Related papers (2021-10-15T09:28:35Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks.
Models are typically fine-tuned on hundreds of thousands of data points, an infeasible requirement when applying summarization to new, niche domains.
We introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner.
arXiv Detail & Related papers (2020-10-24T08:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.