論文の概要: Quantum computing for finance
- arxiv url: http://arxiv.org/abs/2307.11230v1
- Date: Thu, 20 Jul 2023 20:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:23:12.525023
- Title: Quantum computing for finance
- Title(参考訳): ファイナンスのための量子コンピューティング
- Authors: Dylan Herman, Cody Googin, Xiaoyuan Liu, Yue Sun, Alexey Galda, Ilya
Safro, Marco Pistoia, Yuri Alexeev
- Abstract要約: 量子コンピュータは、古典的なコンピュータの計算能力を超え、多くの産業に変革をもたらすことが期待されている。
このレビューは物理学者を対象とし、金融業界で使われている古典的手法の概要を述べ、量子技術の潜在的な利点と限界について論じている。
- 参考スコア(独自算出の注目度): 15.341098545888944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers are expected to surpass the computational capabilities of
classical computers and have a transformative impact on numerous industry
sectors. We present a comprehensive summary of the state of the art of quantum
computing for financial applications, with particular emphasis on stochastic
modeling, optimization, and machine learning. This Review is aimed at
physicists, so it outlines the classical techniques used by the financial
industry and discusses the potential advantages and limitations of quantum
techniques. Finally, we look at the challenges that physicists could help
tackle.
- Abstract(参考訳): 量子コンピュータは、古典的コンピュータの計算能力を超え、多くの産業に変化をもたらすことが期待されている。
本稿では,金融アプリケーションにおける量子コンピューティングの現状,特に確率的モデリング,最適化,機械学習について概説する。
このレビューは物理学者を対象とし、金融業界で使われている古典的手法の概要を述べ、量子技術の潜在的な利点と限界について論じている。
最後に、物理学者が取り組むべき課題に目を向けます。
関連論文リスト
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning Implementations: Proposals and Experiments [0.0]
この記事では、量子強化学習、量子オートエンコーダ、量子メムリスタなど、特定の高インパクトトピックについてレビューする。
量子機械学習の分野は、産業や社会にとって有益な結果を生み出す最初の量子技術の一つかもしれない。
論文 参考訳(メタデータ) (2023-03-11T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum computing at the quantum advantage threshold: a down-to-business
review [1.0323063834827415]
量子コンピューティング、有望な計算モデル、そして最も発達した物理プラットフォームにおける技術の現状についてレビューする。
また、これらの要件に対処するための潜在的な応用、これらの応用によって引き起こされる要件、技術的経路についても論じる。
このレビューは方程式のない単純な言語で書かれており、数学や物理学の先進的なバックグラウンドを持たない読者にアクセスできるべきである。
論文 参考訳(メタデータ) (2022-03-31T16:55:39Z) - A Survey of Quantum Computing for Finance [15.341098545888944]
金融は量子コンピューティングの恩恵を受けた最初の産業セクターであると推定されている。
量子コンピュータは、この10年間で古典的なコンピュータの計算能力を上回ることが期待されている。
論文 参考訳(メタデータ) (2022-01-08T06:16:21Z) - Quantum Machine Learning for Finance [52.97198108304122]
量子コンピューティングの恩恵を受けた最初の業界セクターは金融だと考えられている。
本稿では,金融分野における量子アルゴリズムの現状について述べる。
論文 参考訳(メタデータ) (2021-09-09T14:20:10Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z) - Quantum Computing for Finance: State of the Art and Future Prospects [8.77758485723332]
本稿では、金融問題に対する量子コンピューティングの適用性、現状、および可能性に関する私たちの視点を概説する。
シミュレーションや最適化,マシンラーニング問題など,金融サービスで発生する特定のアプリケーションに対する,詳細な量子アルゴリズムについて説明する。
さらに、IBM Quantumバックエンドにおける量子アルゴリズムのデモンストレーションを含め、金融サービスにおける問題に対する量子アルゴリズムの潜在的なメリットについて議論する。
論文 参考訳(メタデータ) (2020-06-25T16:02:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。