論文の概要: Neuromorphic Online Learning for Spatiotemporal Patterns with a
Forward-only Timeline
- arxiv url: http://arxiv.org/abs/2307.11314v1
- Date: Fri, 21 Jul 2023 02:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:03:18.727763
- Title: Neuromorphic Online Learning for Spatiotemporal Patterns with a
Forward-only Timeline
- Title(参考訳): 前向きタイムラインを用いた時空間パターンのニューロモルフィックオンライン学習
- Authors: Zhenhang Zhang, Jingang Jin, Haowen Fang, Qinru Qiu
- Abstract要約: スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、高エネルギー効率のバイオプレースブルコンピューティングモデルである。
BPTT(Back Proagation Through Time)は、伝統的にSNNのトレーニングに使用される。
SNNのオンライン学習に特化して設計されたSOLSA(Spatiotemporal Online Learning for Synaptic Adaptation)を提案する。
- 参考スコア(独自算出の注目度): 5.094970748243019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are bio-plausible computing models with high
energy efficiency. The temporal dynamics of neurons and synapses enable them to
detect temporal patterns and generate sequences. While Backpropagation Through
Time (BPTT) is traditionally used to train SNNs, it is not suitable for online
learning of embedded applications due to its high computation and memory cost
as well as extended latency. Previous works have proposed online learning
algorithms, but they often utilize highly simplified spiking neuron models
without synaptic dynamics and reset feedback, resulting in subpar performance.
In this work, we present Spatiotemporal Online Learning for Synaptic Adaptation
(SOLSA), specifically designed for online learning of SNNs composed of Leaky
Integrate and Fire (LIF) neurons with exponentially decayed synapses and soft
reset. The algorithm not only learns the synaptic weight but also adapts the
temporal filters associated to the synapses. Compared to the BPTT algorithm,
SOLSA has much lower memory requirement and achieves a more balanced temporal
workload distribution. Moreover, SOLSA incorporates enhancement techniques such
as scheduled weight update, early stop training and adaptive synapse filter,
which speed up the convergence and enhance the learning performance. When
compared to other non-BPTT based SNN learning, SOLSA demonstrates an average
learning accuracy improvement of 14.2%. Furthermore, compared to BPTT, SOLSA
achieves a 5% higher average learning accuracy with a 72% reduction in memory
cost.
- Abstract(参考訳): spiking neural networks (snns) は、高エネルギー効率のバイオプラッシブル・コンピューティングモデルである。
ニューロンとシナプスの時間的ダイナミクスは、時間的パターンを検出し、シーケンスを生成することができる。
Backproagation Through Time (BPTT) は伝統的にSNNのトレーニングに使用されているが、高い計算とメモリコストと拡張遅延のため、組み込みアプリケーションのオンライン学習には適していない。
従来の研究はオンライン学習アルゴリズムを提案しているが、シナプスダイナミクスやリセットフィードバックを伴わずに非常に単純化されたスパイクニューロンモデルを使用することが多かった。
本稿では,SOLSA(Spatiotemporal Online Learning for Synaptic Adaptation)を提案する。これは,指数的に崩壊したシナプスとソフトリセットを持つLeaky Integrate and Fire(LIF)ニューロンからなるSNNのオンライン学習用に特別に設計されたものだ。
このアルゴリズムはシナプス重みを学習するだけでなく、シナプスに関連する時間フィルタにも適応する。
BPTTアルゴリズムと比較して、SOLSAはメモリ要件がはるかに低く、時間的ワークロードの分散をよりバランスよく実現している。
さらに、SOLSAは、スケジュールされた重み付け更新、早期停止訓練、適応的なシナプスフィルタなどの強化技術を導入し、収束を高速化し、学習性能を向上させる。
他の非BPTTベースのSNN学習と比較して、SOLSAは平均的な学習精度が14.2%向上したことを示した。
さらに,BPTTと比較して,SOLSAは平均学習精度を5%高め,メモリコストを72%削減する。
関連論文リスト
- Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks [69.2642802272367]
スパイクニューラルネットワーク(SNN)を用いた脳誘発ニューロモルフィックコンピューティングは、有望なエネルギー効率の計算手法である。
最近の手法では、空間的および時間的バックプロパゲーション(BP)を利用しており、ニューロモルフィックの性質に固執していない。
オンライン擬似ゼロオーダートレーニング(OPZO)を提案する。
論文 参考訳(メタデータ) (2024-07-17T12:09:00Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - An Unsupervised STDP-based Spiking Neural Network Inspired By
Biologically Plausible Learning Rules and Connections [10.188771327458651]
スパイク刺激依存性可塑性(STDP)は脳の一般的な学習規則であるが、STDPだけで訓練されたスパイクニューラルネットワーク(SNN)は非効率であり、性能が良くない。
我々は適応的なシナプスフィルタを設計し、SNNの表現能力を高めるために適応的なスパイキングしきい値を導入する。
我々のモデルは、MNISTおよびFashionMNISTデータセットにおける教師なしSTDPベースのSNNの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-06T14:53:32Z) - Accurate online training of dynamical spiking neural networks through
Forward Propagation Through Time [1.8515971640245998]
最近開発されたBPTTの代替手段が、スパイクニューラルネットワークにどのように適用できるかを示す。
FPTTは、損失に対する動的に規則化されたリスクを最小化しようとする。
FPTTで訓練したSNNは、オンラインBPTT近似よりも優れており、時間的分類タスクにおいてオフラインBPTT精度に近づいたり、超えたりしている。
論文 参考訳(メタデータ) (2021-12-20T13:44:20Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Temporal Spike Sequence Learning via Backpropagation for Deep Spiking
Neural Networks [14.992756670960008]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率の良いイベント駆動ニューロモルフィックプロセッサの計算と実装に適している。
深部SNNを訓練するためのTSSL-BP(Temporal Spike Sequence Learning Backpropagation)法を提案する。
論文 参考訳(メタデータ) (2020-02-24T05:49:37Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
空間的時間特性を持つ生物解析可能なSNNモデルは複雑な力学系である。
ニューロン非線形性を持つ無限インパルス応答(IIR)フィルタのネットワークとしてSNNを定式化する。
本稿では,最適シナプスフィルタカーネルと重みを求めることにより,時空間パターンを学習できる学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-19T01:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。