Direct and inverse modeling of soft robots by learning a condensed FEM
model
- URL: http://arxiv.org/abs/2307.11408v1
- Date: Fri, 21 Jul 2023 08:07:16 GMT
- Title: Direct and inverse modeling of soft robots by learning a condensed FEM
model
- Authors: Etienne M\'enager, Tanguy Navez, Olivier Goury and Christian Duriez
- Abstract summary: We propose a learning-based approach to obtain a compact but sufficiently rich mechanical representation.
We show how to couple some models learned individually in particular on an example of a gripper composed of two soft fingers.
This work opens new perspectives, namely for the embedded control of soft robots, but also for their design.
- Score: 3.4696964555947694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Finite Element Method (FEM) is a powerful modeling tool for predicting
the behavior of soft robots. However, its use for control can be difficult for
non-specialists of numerical computation: it requires an optimization of the
computation to make it real-time. In this paper, we propose a learning-based
approach to obtain a compact but sufficiently rich mechanical representation.
Our choice is based on nonlinear compliance data in the actuator/effector space
provided by a condensation of the FEM model. We demonstrate that this compact
model can be learned with a reasonable amount of data and, at the same time, be
very efficient in terms of modeling, since we can deduce the direct and inverse
kinematics of the robot. We also show how to couple some models learned
individually in particular on an example of a gripper composed of two soft
fingers. Other results are shown by comparing the inverse model derived from
the full FEM model and the one from the compact learned version. This work
opens new perspectives, namely for the embedded control of soft robots, but
also for their design. These perspectives are also discussed in the paper.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Fitting a Directional Microstructure Model to Diffusion-Relaxation MRI
Data with Self-Supervised Machine Learning [2.8167227950959206]
Self-supervised machine learning is emerging as an attractive alternative to supervised learning.
In this paper, we demonstrate self-supervised machine learning model fitting for a directional microstructural model.
Our approach shows clear improvements in parameter estimation and computational time, compared to standard non-linear least squares fitting.
arXiv Detail & Related papers (2022-10-05T15:51:39Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
Soft actuators offer a safe and adaptable approach to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems is challenging due to the complex physics of deformable materials.
This paper presents a framework that combines the advantages of differentiable simulator and Finite Element Method.
arXiv Detail & Related papers (2022-02-25T21:15:05Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC) is a hybrid model-based/model-free method that combines model predictive rollouts with policy optimization as to mitigate model bias.
MoPAC guarantees optimal skill learning up to an approximation error and reduces necessary physical interaction with the environment.
arXiv Detail & Related papers (2021-03-25T13:50:24Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z) - Structured Mechanical Models for Robot Learning and Control [38.52004843488286]
Black-box neural networks suffer from data-inefficiency and the difficulty to incorporate prior knowledge.
We introduce Structured Mechanical Models that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques.
We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.
arXiv Detail & Related papers (2020-04-21T21:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.