論文の概要: Structure-Aware Code Vulnerability Analysis With Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2307.11454v2
- Date: Tue, 18 Jun 2024 15:44:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 05:13:54.203944
- Title: Structure-Aware Code Vulnerability Analysis With Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いた構造認識型コードの脆弱性解析
- Authors: Ravil Mussabayev,
- Abstract要約: 本研究では,ソフトウェアコードの脆弱性検出におけるグラフニューラルネットワーク(GNN)の有効性について検討する。
主な焦点は、脆弱なコードセグメントを特定し、それらの固定バージョンと区別する際のGNNの一般的な適用性を評価することである。
実験により、特定のグラフ要素のプルーニングや特定の種類のコード表現の排除など、特定のモデル構成がパフォーマンスを著しく向上させることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study explores the effectiveness of graph neural networks (GNNs) for vulnerability detection in software code, utilizing a real-world dataset of Java vulnerability-fixing commits. The dataset's structure, based on the number of modified methods in each commit, offers a natural partition that facilitates diverse investigative scenarios. The primary focus is to evaluate the general applicability of GNNs in identifying vulnerable code segments and distinguishing these from their fixed versions, as well as from random non-vulnerable code. Through a series of experiments, the research addresses key questions about the suitability of different configurations and subsets of data in enhancing the prediction accuracy of GNN models. Experiments indicate that certain model configurations, such as the pruning of specific graph elements and the exclusion of certain types of code representation, significantly improve performance. Additionally, the study highlights the importance of including random data in training to optimize the detection capabilities of GNNs.
- Abstract(参考訳): 本研究では,Javaの脆弱性修正コミットの実際のデータセットを用いて,ソフトウェアコードの脆弱性検出におけるグラフニューラルネットワーク(GNN)の有効性を検討する。
データセットの構造は、コミット毎に修正されたメソッドの数に基づいて、さまざまな調査シナリオを促進する自然なパーティションを提供する。
主な焦点は、脆弱なコードセグメントを識別し、それらの固定バージョンと、ランダムな非脆弱性コードとの区別において、GNNの一般的な適用性を評価することである。
一連の実験を通じて、GNNモデルの予測精度を高めるために、異なる構成とデータのサブセットの適合性に関する重要な疑問に対処する。
実験により、特定のグラフ要素のプルーニングや特定の種類のコード表現の排除など、特定のモデル構成がパフォーマンスを著しく向上させることが示された。
さらに、GNNの検出能力を最適化するために、トレーニングにランダムデータを含めることの重要性を強調した。
関連論文リスト
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
本稿では,ネットワーク侵入検知システム(NIDS)のためのニューラルネットワークについて述べる。
ディープパケットインスペクションに頼らず、ほとんどのNIDSデータセットで見つからず、従来のフローコレクタから簡単に取得できる11の機能しか必要としない。
報告されたトレーニング精度は、提案手法の99%を超え、ニューラルネットワークの入力特性は20に満たない。
論文 参考訳(メタデータ) (2024-10-24T11:36:19Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングでますます人気が高まっている。
本稿では,構造変化が発生した場合,GNNの性能が著しく低下することが実験的に確認された。
本稿では,GNNの不変表現を学習するクラスタ情報伝達(CIT)機構を提案する。
論文 参考訳(メタデータ) (2024-03-06T10:36:56Z) - Sequential Graph Neural Networks for Source Code Vulnerability
Identification [5.582101184758527]
我々は,C/C++ソースコードの脆弱性データセットを適切にキュレートし,モデルの開発を支援する。
また,多数のコード意味表現を学習するための連続グラフニューラルネットワーク(SEGNN)という,グラフニューラルネットワークに基づく学習フレームワークを提案する。
グラフ分類設定における2つのデータセットと4つのベースライン手法による評価は、最先端の結果を示している。
論文 参考訳(メタデータ) (2023-05-23T17:25:51Z) - ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection [20.65271290295621]
本稿では,脆弱性検出のためのグラフネットワークモデルReGVDを提案する。
特にReGVDは、あるソースコードをフラットなトークンのシーケンスと見なしている。
我々は、脆弱性検出のためのCodeXGLUEから、実世界のベンチマークデータセット上で最も高い精度を得る。
論文 参考訳(メタデータ) (2021-10-14T12:44:38Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。