Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
- URL: http://arxiv.org/abs/2307.11470v3
- Date: Mon, 25 Nov 2024 08:53:06 GMT
- Title: Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
- Authors: Hao Qi, Shixuan Xu, Xinghui Dong,
- Abstract summary: We leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE)
PATS-UIENet comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream)
We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data.
- Score: 6.7932860553262415
- License:
- Abstract: Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Triple-Stream Underwater Image Enhancement Network, i.e., PATS-UIENet, which comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of a revised IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. To our knowledge, such a physics-aware deep network and the IFM-inspired semi-supervised learning framework have not been used for the UIE task before. Our method performs better than, or at least comparably to, sixteen baselines across six testing sets in the degradation estimation and UIE tasks. These promising results should be due to the fact that the proposed method can not only model the degradation but also learn the characteristics of diverse underwater scenes.
Related papers
- Underwater Image Quality Assessment: A Perceptual Framework Guided by Physical Imaging [52.860312888450096]
We propose a physically imaging-guided framework for underwater image quality assessment (UIQA) called PIGUIQA.
We incorporate advanced physics-based underwater imaging estimation into our method and define distortion metrics that measure the impact of direct transmission attenuation and backwards scattering on image quality.
PIGUIQA achieves state-of-the-art performance in underwater image quality prediction and exhibits strong generalizability.
arXiv Detail & Related papers (2024-12-20T03:31:45Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
Underwater image enhancement (UIE) plays a crucial role in various marine applications.
Current learning-based approaches frequently lack explicit prior knowledge about the physical processes involved in underwater image formation.
This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature incorporation.
arXiv Detail & Related papers (2024-08-20T08:48:33Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
This work compares different deep-learning architectures to perform underwater docking detection and classification.
A Generative Adversarial Network (GAN) is used to do image-to-image translation, converting the Gazebo simulation image into an underwater-looking image.
Results show an improvement of 20% in the high turbidity scenarios regardless of the underwater currents.
arXiv Detail & Related papers (2023-11-02T18:10:20Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.