PIGUIQA: A Physical Imaging Guided Perceptual Framework for Underwater Image Quality Assessment
- URL: http://arxiv.org/abs/2412.15527v2
- Date: Thu, 06 Mar 2025 03:19:13 GMT
- Title: PIGUIQA: A Physical Imaging Guided Perceptual Framework for Underwater Image Quality Assessment
- Authors: Weizhi Xian, Mingliang Zhou, Leong Hou U, Lang Shujun, Bin Fang, Tao Xiang, Zhaowei Shang, Weijia Jia,
- Abstract summary: We propose a Physical Imaging Guided perceptual framework for Underwater Image Quality Assessment (UIQA)<n>By leveraging underwater radiative transfer theory, we integrate physics-based imaging estimations to establish quantitative metrics for these distortions.<n>The proposed model accurately predicts image quality scores and achieves state-of-the-art performance.
- Score: 59.9103803198087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Physical Imaging Guided perceptual framework for Underwater Image Quality Assessment (UIQA), termed PIGUIQA. First, we formulate UIQA as a comprehensive problem that considers the combined effects of direct transmission attenuation and backward scattering on image perception. By leveraging underwater radiative transfer theory, we systematically integrate physics-based imaging estimations to establish quantitative metrics for these distortions. Second, recognizing spatial variations in image content significance and human perceptual sensitivity to distortions, we design a module built upon a neighborhood attention mechanism for local perception of images. This module effectively captures subtle features in images, thereby enhancing the adaptive perception of distortions on the basis of local information. Third, by employing a global perceptual aggregator that further integrates holistic image scene with underwater distortion information, the proposed model accurately predicts image quality scores. Extensive experiments across multiple benchmarks demonstrate that PIGUIQA achieves state-of-the-art performance while maintaining robust cross-dataset generalizability. The implementation is publicly available at https://anonymous.4open.science/r/PIGUIQA-A465/
Related papers
- Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment [0.0]
We propose a novel IQA approach that bridges the gap between deep learning methods and human perception.
Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately.
This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process.
arXiv Detail & Related papers (2025-04-24T04:06:07Z) - DPF-Net: Physical Imaging Model Embedded Data-Driven Underwater Image Enhancement [2.1953477234116705]
This research presents a two-stage underwater image enhancement network called the Data-Driven and Physical Parameters Fusion Network (DPF-Net)
It harnesses the robustness of physical imaging models alongside the generality and efficiency of data-driven methods.
Our proposed DPF-Net demonstrates superior performance compared to other benchmark methods across multiple test sets.
arXiv Detail & Related papers (2025-03-16T11:53:18Z) - HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning [62.264673293638175]
Existing underwater image enhancement methods primarily focus on improving visual quality while overlooking practical implications.
We propose a invertible network for underwater perception enhancement, dubbed H, which enhances visual quality and demonstrates flexibility in handling other downstream tasks.
arXiv Detail & Related papers (2024-11-27T12:37:03Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
We propose to model the quality degradation in perceptual space from a statistical distribution perspective.
The quality is measured based upon the Wasserstein distance in the deep feature domain.
The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination.
arXiv Detail & Related papers (2022-08-05T02:46:12Z) - UIF: An Objective Quality Assessment for Underwater Image Enhancement [17.145844358253164]
We propose an Underwater Image Fidelity (UIF) metric for objective evaluation of enhanced underwater images.
By exploiting the statistical features of these images, we present to extract naturalness-related, sharpness-related, and structure-related features.
Experimental results confirm that the proposed UIF outperforms a variety of underwater and general-purpose image quality metrics.
arXiv Detail & Related papers (2022-05-19T08:43:47Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.