論文の概要: CORE: Cooperative Reconstruction for Multi-Agent Perception
- arxiv url: http://arxiv.org/abs/2307.11514v1
- Date: Fri, 21 Jul 2023 11:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 12:43:28.061265
- Title: CORE: Cooperative Reconstruction for Multi-Agent Perception
- Title(参考訳): CORE : マルチエージェント・パーセプションのための協調的再建
- Authors: Binglu Wang, Lei Zhang, Zhaozhong Wang, Yongqiang Zhao, Tianfei Zhou
- Abstract要約: COREは概念的にシンプルで効果的でコミュニケーション効率の良い多エージェント協調知覚モデルである。
2つの重要な洞察に基づいて協調的な再建という新たな視点から、この課題に対処する。
大規模マルチエージェントの知覚データセットであるOPV2V上でCOREを検証する。
- 参考スコア(独自算出の注目度): 24.306731432524227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents CORE, a conceptually simple, effective and
communication-efficient model for multi-agent cooperative perception. It
addresses the task from a novel perspective of cooperative reconstruction,
based on two key insights: 1) cooperating agents together provide a more
holistic observation of the environment, and 2) the holistic observation can
serve as valuable supervision to explicitly guide the model learning how to
reconstruct the ideal observation based on collaboration. CORE instantiates the
idea with three major components: a compressor for each agent to create more
compact feature representation for efficient broadcasting, a lightweight
attentive collaboration component for cross-agent message aggregation, and a
reconstruction module to reconstruct the observation based on aggregated
feature representations. This learning-to-reconstruct idea is task-agnostic,
and offers clear and reasonable supervision to inspire more effective
collaboration, eventually promoting perception tasks. We validate CORE on
OPV2V, a large-scale multi-agent percetion dataset, in two tasks, i.e., 3D
object detection and semantic segmentation. Results demonstrate that the model
achieves state-of-the-art performance on both tasks, and is more
communication-efficient.
- Abstract(参考訳): 本稿では,マルチエージェント協調認識のための概念的,シンプルで効果的かつコミュニケーション効率の良いモデルであるCOREを提案する。
それは2つの重要な洞察に基づいて、新しい協力的再構築の観点からその課題に対処する。
1)協力するエージェントは、より総合的な環境観察を提供し、
2)包括的観察は,協調に基づく理想的な観察の再構築方法について,モデル学習を明示的に指導する上で,貴重な監督となる。
COREは、各エージェントが効率的な放送のためによりコンパクトな特徴表現を作成するための圧縮機、クロスエージェントメッセージアグリゲーションのための軽量な注意協調コンポーネント、集約された特徴表現に基づいて観察を再構築する再構築モジュールの3つの主要なコンポーネントでアイデアをインスタンス化する。
この学習から再構築までのアイデアはタスク非依存であり、より効果的なコラボレーションを刺激し、最終的には知覚タスクを促進するための明確で合理的な監督を提供する。
大規模マルチエージェント知覚データセットであるopv2vのコアを,3次元オブジェクト検出と意味セグメンテーションという2つのタスクで検証した。
その結果,両タスクの最先端性能が得られ,通信効率が向上した。
関連論文リスト
- Multi-branch Collaborative Learning Network for 3D Visual Grounding [66.67647903507927]
3D参照表現理解(3DREC)とセグメンテーション(3DRES)は重なり合う目標を持ち、コラボレーションの可能性を示している。
我々は,3DRECタスクと3DRESタスクに個別のブランチを採用することで,各タスクの特定の情報を学ぶ能力が向上すると主張している。
論文 参考訳(メタデータ) (2024-07-07T13:27:14Z) - Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Construction [6.020016097668138]
CooperKGCは、知識グラフ構築(KGC)における大規模言語モデル(LLM)の従来の孤立的アプローチに挑戦する新しいフレームワークである。
CooperKGCはコラボレーティブな処理ネットワークを確立し、エンティティ、リレーション、イベント抽出タスクを同時に処理できるチームを組み立てる。
論文 参考訳(メタデータ) (2023-12-05T07:27:08Z) - Spatio-Temporal Domain Awareness for Multi-Agent Collaborative
Perception [18.358998861454477]
車両間通信の潜在的な応用としてのマルチエージェント協調認識は、単一エージェント認識よりも自律走行車の性能知覚を著しく向上させる可能性がある。
本稿では,エージェント間の認識特性をエンドツーエンドに集約する新しい協調認識フレームワークSCOPEを提案する。
論文 参考訳(メタデータ) (2023-07-26T03:00:31Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
複数の共通認識課題を解決するための効率的な統合フレームワークを考案する。
これらのタスクには、インスタンスセグメンテーション、セマンティックセグメンテーション、モノクル3D検出、深さ推定が含まれる。
提案するフレームワークはD2BNetと呼ばれ,マルチタスク認識のためのパラメータ効率予測に一意なアプローチを示す。
論文 参考訳(メタデータ) (2023-06-08T09:24:46Z) - UMC: A Unified Bandwidth-efficient and Multi-resolution based
Collaborative Perception Framework [20.713675020714835]
UMCと呼ばれる統一協調認識フレームワークを提案する。
マルチレゾリューション技術を用いて,コミュニケーション,コラボレーション,再構築プロセスの最適化を図っている。
実験の結果,提案したUTCは,最先端の協調認識手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2023-03-22T09:09:02Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
時間的行動局所化 (WS-TAL) は、ビデオレベルの分類的監督によって、ビデオ内のアクションインスタンスをローカライズすることを目的とした課題である。
この問題に対処するためのクロスモーダルコンセンサスネットワーク(CO2-Net)を提案する。
論文 参考訳(メタデータ) (2021-07-27T04:21:01Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD)は、2つ以上の関連する画像を含む所定のクエリグループに繰り返し現れる健全なオブジェクトを発見することを目的としている。
課題の1つは、画像間の関係をモデリングし、活用することによって、コ・サリヤ・キューを効果的にキャプチャする方法である。
我々は,複数画像から有能かつ反復的な視覚パターンを捉えるために,エンドツーエンドの協調集約配信ネットワーク(CoADNet)を提案する。
論文 参考訳(メタデータ) (2020-11-10T04:28:11Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
高忠実な3Dシミュレーション環境において、AI2Thorのような一対一のオブジェクトインタラクションタスクは、強化学習エージェントに顕著なサンプル効率の課題をもたらす。
補助的なタスクとして注意的オブジェクトモデルを学ぶことで、監督なしに、ゼロからオブジェクトインタラクションタスクを学習できることが示される。
論文 参考訳(メタデータ) (2020-10-28T19:27:26Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z) - A Visual Communication Map for Multi-Agent Deep Reinforcement Learning [7.003240657279981]
マルチエージェント学習は、隠蔽された通信媒体を割り当てる上で大きな課題となる。
最近の研究は一般的に、エージェント間の通信を可能にするために、特殊なニューラルネットワークと強化学習を組み合わせる。
本稿では,多数のエージェントを扱うだけでなく,異種機能エージェント間の協調を可能にする,よりスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-27T02:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。