論文の概要: Morphological Image Analysis and Feature Extraction for Reasoning with
AI-based Defect Detection and Classification Models
- arxiv url: http://arxiv.org/abs/2307.11643v3
- Date: Tue, 10 Oct 2023 09:45:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 05:30:57.478849
- Title: Morphological Image Analysis and Feature Extraction for Reasoning with
AI-based Defect Detection and Classification Models
- Title(参考訳): AIに基づく欠陥検出と分類モデルを用いた推論のための形態的画像解析と特徴抽出
- Authors: Jiajun Zhang, Georgina Cosma, Sarah Bugby, Axel Finke and Jason
Watkins
- Abstract要約: 本稿では,画像から欠陥(DefChars)の形態的特徴を抽出するAI-Reasonerを提案する。
AI-Reasonerは、視覚化(チャート)とテキストの説明をエクスポートし、マスクによる欠陥検出と分類モデルによるアウトプットに関する洞察を提供する。
また、データ前処理と全体的なモデルパフォーマンスを強化する効果的な緩和戦略も提供する。
- 参考スコア(独自算出の注目度): 10.498224499451991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the use of artificial intelligent (AI) models becomes more prevalent in
industries such as engineering and manufacturing, it is essential that these
models provide transparent reasoning behind their predictions. This paper
proposes the AI-Reasoner, which extracts the morphological characteristics of
defects (DefChars) from images and utilises decision trees to reason with the
DefChar values. Thereafter, the AI-Reasoner exports visualisations (i.e.
charts) and textual explanations to provide insights into outputs made by
masked-based defect detection and classification models. It also provides
effective mitigation strategies to enhance data pre-processing and overall
model performance. The AI-Reasoner was tested on explaining the outputs of an
IE Mask R-CNN model using a set of 366 images containing defects. The results
demonstrated its effectiveness in explaining the IE Mask R-CNN model's
predictions. Overall, the proposed AI-Reasoner provides a solution for
improving the performance of AI models in industrial applications that require
defect analysis.
- Abstract(参考訳): 人工知能(AI)モデルの使用が工学や製造などの産業で普及するにつれて、これらのモデルが予測の背後にある透明な推論を提供することが不可欠である。
本稿では,画像から欠陥(果柄)の形態的特徴を抽出し,決定木を用いて果柄値の推論を行うai-reasonerを提案する。
その後、AI-Reasonerは視覚化(チャート)とテキストの説明をエクスポートし、マスクによる欠陥検出と分類モデルによるアウトプットに関する洞察を提供する。
また、データ前処理と全体的なモデルパフォーマンスを強化する効果的な緩和戦略も提供する。
AI-Reasonerは、欠陥を含む366イメージのセットを使用して、IE Mask R-CNNモデルの出力を説明するためにテストされた。
この結果は,IE Mask R-CNNモデルの予測を説明する上での有効性を示した。
全体として、提案されたAI-Reasonerは、欠陥分析を必要とする産業アプリケーションにおけるAIモデルのパフォーマンスを改善するソリューションを提供する。
関連論文リスト
- Explainable Artificial Intelligence for Dependent Features: Additive Effects of Collinearity [0.0]
本稿では,コリナリティ問題を考慮した新しいXAI手法として,コリナリティの付加効果(AEC)を提案する。
提案手法はシミュレーションデータと実データを用いて,芸術的XAI法と比較し,その効率性を検証した。
論文 参考訳(メタデータ) (2024-10-30T07:00:30Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
製造パイプラインにおける異常検出は、産業環境の複雑さと変動性によって強化され、依然として重要な課題である。
本稿では,スマート製造パイプラインに適した解釈可能な画像ベース異常検出システムAssemAIを紹介する。
論文 参考訳(メタデータ) (2024-08-05T01:50:09Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
本稿では、認識された公開ゲノムデータセット上の下流タスクを利用するAIモデルの脆弱性を実証する。
我々は、実際のデータを模倣し、モデルの意思決定を混乱させながら、入力変換に焦点を当てた攻撃を展開することによって、モデルの堅牢性を損なう。
実験の結果, 精度が低下し, 偽陽性や偽陰性が増加し, モデル性能が低下していることが明らかとなった。
論文 参考訳(メタデータ) (2024-01-19T12:04:31Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAIツールは、モデル抽出攻撃の脆弱性を増大させる可能性がある。
そこで本研究では,ブラックボックス設定下での解釈可能なモデルに対して,新たなリトレーニング(学習)に基づくモデル抽出攻撃フレームワークを提案する。
AUTOLYCUSは非常に効果的で、最先端の攻撃に比べてクエリが大幅に少ないことが示される。
論文 参考訳(メタデータ) (2023-02-04T13:23:39Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。