Improving Video Colorization by Test-Time Tuning
- URL: http://arxiv.org/abs/2307.11757v1
- Date: Sun, 25 Jun 2023 05:36:40 GMT
- Title: Improving Video Colorization by Test-Time Tuning
- Authors: Yaping Zhao, Haitian Zheng, Jiebo Luo, Edmund Y. Lam
- Abstract summary: We propose an effective method, which aims to enhance video colorization through test-time tuning.
By exploiting the reference to construct additional training samples during testing, our approach achieves a performance boost of 13 dB in PSNR on average.
- Score: 79.67548221384202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancements in deep learning, video colorization by propagating
color information from a colorized reference frame to a monochrome video
sequence has been well explored. However, the existing approaches often suffer
from overfitting the training dataset and sequentially lead to suboptimal
performance on colorizing testing samples. To address this issue, we propose an
effective method, which aims to enhance video colorization through test-time
tuning. By exploiting the reference to construct additional training samples
during testing, our approach achieves a performance boost of 1~3 dB in PSNR on
average compared to the baseline. Code is available at:
https://github.com/IndigoPurple/T3
Related papers
- L-C4: Language-Based Video Colorization for Creative and Consistent Color [59.069498113050436]
We present Language-based video colorization for Creative and Consistent Colors (L-C4)
Our model is built upon a pre-trained cross-modality generative model.
We propose temporally deformable attention to prevent flickering or color shifts, and cross-clip fusion to maintain long-term color consistency.
arXiv Detail & Related papers (2024-10-07T12:16:21Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - DiffColor: Toward High Fidelity Text-Guided Image Colorization with
Diffusion Models [12.897939032560537]
We propose a new method called DiffColor to recover vivid colors conditioned on a prompt text.
We first fine-tune a pre-trained text-to-image model to generate colorized images using a CLIP-based contrastive loss.
Then we try to obtain an optimized text embedding aligning the colorized image and the text prompt, and a fine-tuned diffusion model enabling high-quality image reconstruction.
Our method can produce vivid and diverse colors with a few iterations, and keep the structure and background intact while having colors well-aligned with the target language guidance.
arXiv Detail & Related papers (2023-08-03T09:38:35Z) - Video Colorization with Pre-trained Text-to-Image Diffusion Models [19.807766482434563]
We present ColorDiffuser, an adaptation of a pre-trained text-to-image latent diffusion model for video colorization.
We propose two novel techniques to enhance the temporal coherence and maintain the vividness of colorization across frames.
arXiv Detail & Related papers (2023-06-02T17:58:00Z) - SVCNet: Scribble-based Video Colorization Network with Temporal
Aggregation [19.566913227894997]
SVCNet can colorize monochrome videos based on different user-given color scribbles.
It addresses three common issues in the scribble-based video colorization area: colorization vividness, temporal consistency, and color bleeding.
The experimental results demonstrate that SVCNet produces both higher-quality and more temporally consistent videos.
arXiv Detail & Related papers (2023-03-21T04:42:39Z) - BiSTNet: Semantic Image Prior Guided Bidirectional Temporal Feature
Fusion for Deep Exemplar-based Video Colorization [70.14893481468525]
We present an effective BiSTNet to explore colors of reference exemplars and utilize them to help video colorization.
We first establish the semantic correspondence between each frame and the reference exemplars in deep feature space to explore color information from reference exemplars.
We develop a mixed expert block to extract semantic information for modeling the object boundaries of frames so that the semantic image prior can better guide the colorization process.
arXiv Detail & Related papers (2022-12-05T13:47:15Z) - Temporally Consistent Video Colorization with Deep Feature Propagation
and Self-regularization Learning [90.38674162878496]
We propose a novel temporally consistent video colorization framework (TCVC)
TCVC effectively propagates frame-level deep features in a bidirectional way to enhance the temporal consistency of colorization.
Experiments demonstrate that our method can not only obtain visually pleasing colorized video, but also achieve clearly better temporal consistency than state-of-the-art methods.
arXiv Detail & Related papers (2021-10-09T13:00:14Z) - Image Colorization: A Survey and Dataset [94.59768013860668]
This article presents a comprehensive survey of state-of-the-art deep learning-based image colorization techniques.
It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance.
We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one.
arXiv Detail & Related papers (2020-08-25T01:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.