What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled
Safety Critical Systems
- URL: http://arxiv.org/abs/2307.11784v1
- Date: Thu, 20 Jul 2023 12:40:55 GMT
- Title: What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled
Safety Critical Systems
- Authors: Saddek Bensalem, Chih-Hong Cheng, Wei Huang, Xiaowei Huang, Changshun
Wu, Xingyu Zhao
- Abstract summary: Machine learning has made remarkable advancements, but confidently utilising learning-enabled components in safety-critical domains still poses challenges.
We first discuss the engineering and research challenges associated with the design and verification of such systems.
Then, based on the observation that existing works cannot actually achieve provable guarantees, we promote a two-step verification method for the ultimate achievement of provable statistical guarantees.
- Score: 8.930000909500702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has made remarkable advancements, but confidently utilising
learning-enabled components in safety-critical domains still poses challenges.
Among the challenges, it is known that a rigorous, yet practical, way of
achieving safety guarantees is one of the most prominent. In this paper, we
first discuss the engineering and research challenges associated with the
design and verification of such systems. Then, based on the observation that
existing works cannot actually achieve provable guarantees, we promote a
two-step verification method for the ultimate achievement of provable
statistical guarantees.
Related papers
- Position: Certified Robustness Does Not (Yet) Imply Model Security [29.595213559303996]
certified robustness is promoted as a solution to adversarial examples in Artificial Intelligence systems.<n>We identify critical gaps in current research, including the paradox of detection without distinction.<n>We propose steps to address these fundamental challenges and advance the field toward practical applicability.
arXiv Detail & Related papers (2025-06-16T01:18:33Z) - Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>This Perspective offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Safely Learning Controlled Stochastic Dynamics [61.82896036131116]
We introduce a method that ensures safe exploration and efficient estimation of system dynamics.<n>After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control.<n>We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics.
arXiv Detail & Related papers (2025-06-03T11:17:07Z) - A Domain-Agnostic Scalable AI Safety Ensuring Framework [8.086635708001166]
We propose a novel framework that guarantees AI systems satisfy user-defined safety constraints with specified probabilities.<n>Our approach combines any AI model with an optimization problem that ensures outputs meet safety requirements while maintaining performance.<n>We prove our method guarantees probabilistic safety under mild conditions and establish the first scaling law in AI safety.
arXiv Detail & Related papers (2025-04-29T16:38:35Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.
Existing research predominantly concentrates on the security of general large language models.
This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Probabilistic Shielding for Safe Reinforcement Learning [51.35559820893218]
In real-life scenarios, a Reinforcement Learning (RL) agent must often also behave in a safe manner, including at training time.
We present a new, scalable method, which enjoys strict formal guarantees for Safe RL.
We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time.
arXiv Detail & Related papers (2025-03-09T17:54:33Z) - DIAL: Distribution-Informed Adaptive Learning of Multi-Task Constraints for Safety-Critical Systems [13.93024489228903]
predefined constraint functions to ensure safety in complex real-world tasks, such as autonomous driving.
Recent research highlights the potential of leveraging pre-acquired task-agnostic knowledge to enhance both safety and sample efficiency in related tasks.
We propose a novel method to learn shared constraint distributions across multiple tasks.
Our approach identifies the shared constraints through imitation learning and then adapts to new tasks by adjusting risk levels within these learned distributions.
arXiv Detail & Related papers (2025-01-30T01:56:07Z) - Realizable Continuous-Space Shields for Safe Reinforcement Learning [13.728961635717134]
We present the first shielding approach specifically designed to ensure the satisfaction of safety requirements in continuous state and action spaces.
Our method builds upon realizability, an essential property that confirms the shield will always be able to generate a safe action for any state in the environment.
arXiv Detail & Related papers (2024-10-02T21:08:11Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
"Shielding" is a popular technique to enforce safety inReinforcement Learning (RL)
We propose a new permissibility-based framework to deal with safety and shield construction.
arXiv Detail & Related papers (2024-05-29T18:00:21Z) - Feasibility Consistent Representation Learning for Safe Reinforcement Learning [25.258227763316228]
We introduce a novel framework named Feasibility Consistent Safe Reinforcement Learning (FCSRL)
This framework combines representation learning with feasibility-oriented objectives to identify and extract safety-related information from the raw state for safe RL.
Our method is capable of learning a better safety-aware embedding and achieving superior performance than previous representation learning baselines.
arXiv Detail & Related papers (2024-05-20T01:37:21Z) - Safe Online Dynamics Learning with Initially Unknown Models and
Infeasible Safety Certificates [45.72598064481916]
This paper considers a learning-based setting with a robust safety certificate based on a control barrier function (CBF) second-order cone program.
If the control barrier function certificate is feasible, our approach leverages it to guarantee safety. Otherwise, our method explores the system dynamics to collect data and recover the feasibility of the control barrier function constraint.
arXiv Detail & Related papers (2023-11-03T14:23:57Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Towards Safe Continuing Task Reinforcement Learning [21.390201009230246]
We propose an algorithm capable of operating in the continuing task setting without the need of restarts.
We evaluate our approach in a numerical example, which shows the capabilities of the proposed approach in learning safe policies via safe exploration.
arXiv Detail & Related papers (2021-02-24T22:12:25Z) - Conservative Safety Critics for Exploration [120.73241848565449]
We study the problem of safe exploration in reinforcement learning (RL)
We learn a conservative safety estimate of environment states through a critic.
We show that the proposed approach can achieve competitive task performance while incurring significantly lower catastrophic failure rates.
arXiv Detail & Related papers (2020-10-27T17:54:25Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
Key challenge in applying reinforcement learning to safety-critical domains is understanding how to balance exploration and safety.
We propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in MDPs with unknown, dynamics.
Our method exploits analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP sense.
arXiv Detail & Related papers (2020-07-07T15:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.