Unsupervised Embedding Learning for Human Activity Recognition Using
Wearable Sensor Data
- URL: http://arxiv.org/abs/2307.11796v1
- Date: Fri, 21 Jul 2023 08:52:47 GMT
- Title: Unsupervised Embedding Learning for Human Activity Recognition Using
Wearable Sensor Data
- Authors: Taoran Sheng and Manfred Huber
- Abstract summary: We present an unsupervised approach to project the human activities into an embedding space in which similar activities will be located closely together.
Results of experiments on three labeled benchmark datasets demonstrate the effectiveness of the framework.
- Score: 2.398608007786179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The embedded sensors in widely used smartphones and other wearable devices
make the data of human activities more accessible. However, recognizing
different human activities from the wearable sensor data remains a challenging
research problem in ubiquitous computing. One of the reasons is that the
majority of the acquired data has no labels. In this paper, we present an
unsupervised approach, which is based on the nature of human activity, to
project the human activities into an embedding space in which similar
activities will be located closely together. Using this, subsequent clustering
algorithms can benefit from the embeddings, forming behavior clusters that
represent the distinct activities performed by a person. Results of experiments
on three labeled benchmark datasets demonstrate the effectiveness of the
framework and show that our approach can help the clustering algorithm achieve
improved performance in identifying and categorizing the underlying human
activities compared to unsupervised techniques applied directly to the original
data set.
Related papers
- Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
We describe a weakly self-supervised approach for recognizing human activities from sensor-based data.
We show that our approach can help the clustering algorithm achieve comparable performance in identifying and categorizing the underlying human activities.
arXiv Detail & Related papers (2024-07-29T06:29:21Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
We present an empirical study that evaluates and contrasts four commonly employed annotation methods in user studies focused on in-the-wild data collection.
For both the user-driven, in situ annotations, where participants annotate their activities during the actual recording process, and the recall methods, where participants retrospectively annotate their data at the end of each day, the participants had the flexibility to select their own set of activity classes and corresponding labels.
arXiv Detail & Related papers (2023-05-15T16:02:56Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
Human Activity Recognition (HAR) using on-body devices identifies specific human actions in unconstrained environments.
Previous works demonstrated that transfer learning is a good strategy for addressing scenarios with scarce data.
This paper proposes using datasets intended for human-pose estimation as a source for transfer learning.
arXiv Detail & Related papers (2022-12-02T18:19:36Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
Acquiring balanced datasets containing accurate activity labels requires humans to correctly annotate and potentially interfere with the subjects' normal activities in real-time.
We propose HAR-GCCN, a deep graph CNN model that leverages the correlation between chronologically adjacent sensor measurements to predict the correct labels for unclassified activities.
Har-GCCN shows superior performance relative to previously used baseline methods, improving classification accuracy by about 25% and up to 68% on different datasets.
arXiv Detail & Related papers (2022-03-07T01:23:46Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
We propose a joint learning framework for "interacted object localization" and "human action recognition" based on skeleton data.
Our method achieves the best or competitive performance with the state-of-the-art methods for human action recognition.
arXiv Detail & Related papers (2021-10-28T10:09:34Z) - HHAR-net: Hierarchical Human Activity Recognition using Neural Networks [2.4530909757679633]
This research aims at building a hierarchical classification with Neural Networks to recognize human activities.
We evaluate our model on the Extrasensory dataset; a dataset collected in the wild and containing data from smartphones and smartwatches.
arXiv Detail & Related papers (2020-10-28T17:06:42Z) - Towards Deep Clustering of Human Activities from Wearables [21.198881633580797]
We develop an unsupervised end-to-end learning strategy for the fundamental problem of human activity recognition from wearables.
We show the effectiveness of our approach to jointly learn unsupervised representations for sensory data and generate cluster assignments with strong semantic correspondence to distinct human activities.
arXiv Detail & Related papers (2020-08-02T13:55:24Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially in rare classes.
arXiv Detail & Related papers (2020-07-17T02:47:45Z) - An Efficient Data Imputation Technique for Human Activity Recognition [3.0117625632585705]
We propose a methodology for extrapolating missing samples of a dataset to better recognize the human daily living activities.
The proposed method efficiently pre-processes the data captures and utilizes the k-Nearest Neighbors (KNN) imputation technique.
The proposed methodology elegantly extrapolated a similar pattern of activities as they were in the real dataset.
arXiv Detail & Related papers (2020-07-08T22:05:38Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.