DISCOVER: Data-driven Identification of Sub-activities via Clustering and Visualization for Enhanced Activity Recognition in Smart Homes
- URL: http://arxiv.org/abs/2503.01733v1
- Date: Tue, 11 Feb 2025 20:02:24 GMT
- Title: DISCOVER: Data-driven Identification of Sub-activities via Clustering and Visualization for Enhanced Activity Recognition in Smart Homes
- Authors: Alexander Karpekov, Sonia Chernova, Thomas Plötz,
- Abstract summary: We introduce DISCOVER, a method to discover fine-grained human sub-activities from unlabeled sensor data without relying on pre-segmentation.<n>We demonstrate its effectiveness through a re-annotation exercise on widely used HAR datasets.
- Score: 52.09869569068291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Activity Recognition (HAR) using ambient sensors has great potential for practical applications, particularly in elder care and independent living. However, deploying HAR systems in real-world settings remains challenging due to the high cost of labeled data, the need for pre-segmented sensor streams, and the lack of flexibility in activity granularity. To address these limitations, we introduce DISCOVER, a method designed to discover fine-grained human sub-activities from unlabeled sensor data without relying on pre-segmentation. DISCOVER combines unsupervised feature extraction and clustering with a user-friendly visualization tool to streamline the labeling process. DISCOVER enables domain experts to efficiently annotate only a minimal set of representative cluster centroids, reducing the annotation workload to a small number of samples (0.05% of our dataset). We demonstrate DISCOVER's effectiveness through a re-annotation exercise on widely used HAR datasets, showing that it uncovers finer-grained activities and produces more nuanced annotations than traditional coarse labels. DISCOVER represents a step toward practical, deployable HAR systems that adapt to diverse real environments.
Related papers
- Language-centered Human Activity Recognition [8.925867647929088]
Human Activity Recognition (HAR) using Inertial Measurement Unit (IMU) sensors is critical for applications in healthcare, safety, and industrial production.<n> variations in activity patterns, device types, and sensor placements create distribution gaps across datasets.<n>We propose LanHAR, a novel system that generates semantic interpretations of sensor readings and activity labels for cross-dataset HAR.
arXiv Detail & Related papers (2024-09-12T22:57:29Z) - Improving a Named Entity Recognizer Trained on Noisy Data with a Few
Clean Instances [55.37242480995541]
We propose to denoise noisy NER data with guidance from a small set of clean instances.
Along with the main NER model we train a discriminator model and use its outputs to recalibrate the sample weights.
Results on public crowdsourcing and distant supervision datasets show that the proposed method can consistently improve performance with a small guidance set.
arXiv Detail & Related papers (2023-10-25T17:23:37Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
We present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning.
We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm.
We demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios.
arXiv Detail & Related papers (2023-10-22T19:13:25Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z) - Sequential Weakly Labeled Multi-Activity Localization and Recognition on
Wearable Sensors using Recurrent Attention Networks [13.64024154785943]
We propose a recurrent attention network (RAN) to handle sequential weakly labeled multi-activity recognition and location tasks.
Our RAN model can simultaneously infer multi-activity types from the coarse-grained sequential weak labels.
It will greatly reduce the burden of manual labeling.
arXiv Detail & Related papers (2020-04-13T04:57:09Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.