Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory
- URL: http://arxiv.org/abs/2307.11820v2
- Date: Tue, 12 Nov 2024 13:49:24 GMT
- Title: Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory
- Authors: Niccolò Baldelli, Hannes Karlsson, Benedikt Kloss, Matthew Fishman, Alexander Wietek,
- Abstract summary: Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
- Score: 39.58317527488534
- License:
- Abstract: The phenomena of superconductivity and charge density waves are observed in close vicinity in many strongly correlated materials. Increasing evidence from experiments and numerical simulations suggests both phenomena can also occur in an intertwined manner, where the superconducting order parameter is coupled to the electronic density. Employing density matrix renormalization group simulations, we investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$t^\prime$-$U$ Hubbard model in the strong coupling regime. Remarkably, the condensate of Cooper pairs is shown to be fragmented in the presence of a charge density wave where more than one pairing wave function is macroscopically occupied. Moreover, we provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation in a periodic potential constituted by the charge density wave. In the presence of an orbital magnetic field, the order parameters are gauge invariant, and superconducting vortices are pinned between the stripes. This intertwined Ginzburg-Landau theory is proposed as an effective low-energy description of the stripe fragmented superconductor.
Related papers
- Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Proximity-induced gapless superconductivity in two-dimensional Rashba
semiconductor in magnetic field [0.0]
We introduce a theoretical model describing a disordered semiconductor with strong spin-orbit coupling.
Our model provides predictions for the density of states and superfluid density.
Our model can be used to probe in-situ parameters of other superconductor-semiconductor heterostructures.
arXiv Detail & Related papers (2023-11-15T20:10:17Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1305119700024195]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Anomalous Floquet Chiral Topological Superconductivity in a Topological
Insulator Sandwich Structure [0.0]
We show that Floquet chiral topological superconductivity arises naturally in Josephson junctions made of magnetic topological insulator-superconductor sandwich structures.
The bias voltage acts as a tuning parameter enabling novel dynamical topological quantum phase transitions.
Our theory establishes a new paradigm for realizing Floquet chiral topological superconductivity in solid-state systems.
arXiv Detail & Related papers (2020-12-01T19:00:01Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.