Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices
- URL: http://arxiv.org/abs/2406.02551v2
- Date: Tue, 01 Oct 2024 11:01:03 GMT
- Title: Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices
- Authors: Henning Schlömer, Hannah Lange, Titus Franz, Thomas Chalopin, Petar Bojović, Si Wang, Immanuel Bloch, Timon A. Hilker, Fabian Grusdt, Annabelle Bohrdt,
- Abstract summary: Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
- Score: 0.8453109131640921
- License:
- Abstract: The simulation of high-temperature superconducting materials by implementing strongly correlated fermionic models in optical lattices is one of the major objectives in the field of analog quantum simulation. Here we show that local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox to study fundamental properties of both nickelate and cuprate high-temperature superconductors. On the one hand, we present a scheme to implement a mixed-dimensional (mixD) bilayer model that has been proposed to capture the essential pairing physics of pressurized bilayer nickelates. This allows for the long-sought realization of a state with long-range superconducting order in current lattice quantum simulation machines. In particular, we show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis. On the other hand, we demonstrate that control of local gates enables the observation of $d$-wave pairing order in the two-dimensional (single-layer) repulsive Fermi-Hubbard model through the simulation of a system with attractive interactions. Lastly, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments -- which is of particular interest for future studies of the enigmatic pseudogap phase appearing in cuprates.
Related papers
- Predicting correlations in superradiant emission from a cascaded quantum system [0.0]
A novel type of cascaded quantum system has been realized using nanofiber-coupled cold atomic ensembles.
We develop a new simulation technique based on the truncated Wigner approximation for spins.
Our simulation tool can predict the second-order quantum coherence function, $g(2)$, along with other correlators of the light field emitted by a strongly excited cascaded system of two-level emitters.
arXiv Detail & Related papers (2024-07-02T10:51:40Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1305119700024195]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Localization and melting of interfaces in the two-dimensional quantum
Ising model [0.0]
We study the non-equilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model.
We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system.
arXiv Detail & Related papers (2022-03-17T17:48:51Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.