Model Compression Methods for YOLOv5: A Review
- URL: http://arxiv.org/abs/2307.11904v1
- Date: Fri, 21 Jul 2023 21:07:56 GMT
- Title: Model Compression Methods for YOLOv5: A Review
- Authors: Mohammad Jani, Jamil Fayyad, Younes Al-Younes, Homayoun Najjaran
- Abstract summary: We focus on pruning and quantization due to their comparative modularity.
This is the first specific review paper that surveys pruning and quantization methods from an implementation point of view on YOLOv5.
Our study is also extendable to newer versions of YOLO as implementing them on resource-limited devices poses the same challenges that persist even today.
- Score: 1.2387676601792899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past few years, extensive research has been devoted to enhancing
YOLO object detectors. Since its introduction, eight major versions of YOLO
have been introduced with the purpose of improving its accuracy and efficiency.
While the evident merits of YOLO have yielded to its extensive use in many
areas, deploying it on resource-limited devices poses challenges. To address
this issue, various neural network compression methods have been developed,
which fall under three main categories, namely network pruning, quantization,
and knowledge distillation. The fruitful outcomes of utilizing model
compression methods, such as lowering memory usage and inference time, make
them favorable, if not necessary, for deploying large neural networks on
hardware-constrained edge devices. In this review paper, our focus is on
pruning and quantization due to their comparative modularity. We categorize
them and analyze the practical results of applying those methods to YOLOv5. By
doing so, we identify gaps in adapting pruning and quantization for compressing
YOLOv5, and provide future directions in this area for further exploration.
Among several versions of YOLO, we specifically choose YOLOv5 for its excellent
trade-off between recency and popularity in literature. This is the first
specific review paper that surveys pruning and quantization methods from an
implementation point of view on YOLOv5. Our study is also extendable to newer
versions of YOLO as implementing them on resource-limited devices poses the
same challenges that persist even today. This paper targets those interested in
the practical deployment of model compression methods on YOLOv5, and in
exploring different compression techniques that can be used for subsequent
versions of YOLO.
Related papers
- Quantizing YOLOv7: A Comprehensive Study [0.0]
This paper studies the effectiveness of a variety of quantization schemes on the pre-trained weights of the state-of-the-art YOLOv7 model.
Results show that using 4-bit quantization coupled with the combination of different granularities results in 3.92x and 3.86x memory-saving for uniform and non-uniform quantization.
arXiv Detail & Related papers (2024-07-06T03:23:04Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
This paper focuses on the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10.
We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions.
arXiv Detail & Related papers (2024-07-03T10:40:20Z) - YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series [6.751138557596013]
This study examines the advancements introduced by YOLO algorithms, beginning with YOLOv10 and progressing through YOLOv9, YOLOv8, and subsequent versions.
The study highlights the transformative impact of YOLO across five critical application areas: automotive safety, healthcare, industrial manufacturing, surveillance, and agriculture.
arXiv Detail & Related papers (2024-06-12T06:41:23Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Towards End-to-end Semi-supervised Learning for One-stage Object
Detection [88.56917845580594]
This paper focuses on the semi-supervised learning for the advanced and popular one-stage detection network YOLOv5.
We propose a novel teacher-student learning recipe called OneTeacher with two innovative designs, namely Multi-view Pseudo-label Refinement (MPR) and Decoupled Semi-supervised Optimization (DSO)
In particular, MPR improves the quality of pseudo-labels via augmented-view refinement and global-view filtering, and DSO handles the joint optimization conflicts via structure tweaks and task-specific pseudo-labeling.
arXiv Detail & Related papers (2023-02-22T11:35:40Z) - YOLOv6: A Single-Stage Object Detection Framework for Industrial
Applications [16.047499394184985]
YOLOv6-N hits 35.9% AP on the COCO dataset at a throughput of 1234 FPS on an NVIDIA Tesla T4 GPU.
YOLOv6-S strikes 43.5% AP at 495 FPS, outperforming other mainstream detectors at the same scale.
YOLOv6-M/L achieves better accuracy performance (i.e., 49.5%/52.3%) than other detectors with a similar inference speed.
arXiv Detail & Related papers (2022-09-07T07:47:58Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - PP-YOLO: An Effective and Efficient Implementation of Object Detector [44.189808709103865]
This paper implements an object detector with relatively balanced effectiveness and efficiency.
Considering that YOLOv3 has been widely used in practice, we develop a new object detector based on YOLOv3.
Since all experiments in this paper are conducted based on PaddlePaddle, we call it PP-YOLO.
arXiv Detail & Related papers (2020-07-23T16:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.