YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series
- URL: http://arxiv.org/abs/2406.19407v4
- Date: Thu, 25 Jul 2024 05:24:41 GMT
- Title: YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series
- Authors: Ranjan Sapkota, Rizwan Qureshi, Marco Flores Calero, Chetan Badjugar, Upesh Nepal, Alwin Poulose, Peter Zeno, Uday Bhanu Prakash Vaddevolu, Sheheryar Khan, Maged Shoman, Hong Yan, Manoj Karkee,
- Abstract summary: This study examines the advancements introduced by YOLO algorithms, beginning with YOLOv10 and progressing through YOLOv9, YOLOv8, and subsequent versions.
The study highlights the transformative impact of YOLO across five critical application areas: automotive safety, healthcare, industrial manufacturing, surveillance, and agriculture.
- Score: 6.751138557596013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv10. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv10 and progressing through YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, accuracy, and computational efficiency in real-time object detection. The study highlights the transformative impact of YOLO across five critical application areas: automotive safety, healthcare, industrial manufacturing, surveillance, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and General Artificial Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications.
Related papers
- YOLOv1 to YOLOv10: The fastest and most accurate real-time object detection systems [13.925576406783991]
This review article re-examines the characteristics of the YOLO series from the latest technical point of view.
We take a closer look at how the methods proposed by the YOLO series in the past ten years have affected the development of subsequent technologies.
arXiv Detail & Related papers (2024-08-18T02:11:00Z) - Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation [74.65906322148997]
We introduce a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features.
Hyper-YOLO significantly outperforms the advanced YOLOv8-N and YOLOv9T with 12% $textval$ and 9% $APMoonLab improvements.
arXiv Detail & Related papers (2024-08-09T01:21:15Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
This paper focuses on the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10.
We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions.
arXiv Detail & Related papers (2024-07-03T10:40:20Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Model Compression Methods for YOLOv5: A Review [1.2387676601792899]
We focus on pruning and quantization due to their comparative modularity.
This is the first specific review paper that surveys pruning and quantization methods from an implementation point of view on YOLOv5.
Our study is also extendable to newer versions of YOLO as implementing them on resource-limited devices poses the same challenges that persist even today.
arXiv Detail & Related papers (2023-07-21T21:07:56Z) - A Comprehensive Review of YOLO Architectures in Computer Vision: From
YOLOv1 to YOLOv8 and YOLO-NAS [0.0]
YOLO has become a central real-time object detection system for robotics, driverless cars, and video monitoring applications.
We present a comprehensive analysis of YOLO's evolution, examining the innovations and contributions in each iteration from the original YOLO up to YOLOv8, YOLO-NAS, and YOLO with Transformers.
arXiv Detail & Related papers (2023-04-02T10:27:34Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.