論文の概要: AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities
- arxiv url: http://arxiv.org/abs/2307.12128v1
- Date: Sat, 22 Jul 2023 17:08:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 18:01:22.907577
- Title: AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities
- Title(参考訳): 道路上のAI:スマートシティにおける交通事故と事故検知システムに関する総合分析
- Authors: Victor Adewopo, Nelly Elsayed, Zag Elsayed, Murat Ozer, Victoria
Wangia-Anderson, Ahmed Abdelgawad
- Abstract要約: 本稿では,米国各地における交通事故の包括的分析について述べる。
事故検出と交通分析の課題に対処するために,交通監視カメラと行動認識システムを用いたフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accident detection and traffic analysis is a critical component of smart city
and autonomous transportation systems that can reduce accident frequency,
severity and improve overall traffic management. This paper presents a
comprehensive analysis of traffic accidents in different regions across the
United States using data from the National Highway Traffic Safety
Administration (NHTSA) Crash Report Sampling System (CRSS). To address the
challenges of accident detection and traffic analysis, this paper proposes a
framework that uses traffic surveillance cameras and action recognition systems
to detect and respond to traffic accidents spontaneously. Integrating the
proposed framework with emergency services will harness the power of traffic
cameras and machine learning algorithms to create an efficient solution for
responding to traffic accidents and reducing human errors. Advanced
intelligence technologies, such as the proposed accident detection systems in
smart cities, will improve traffic management and traffic accident severity.
Overall, this study provides valuable insights into traffic accidents in the US
and presents a practical solution to enhance the safety and efficiency of
transportation systems.
- Abstract(参考訳): 事故検出と交通分析は、事故発生頻度、重大度、交通管理全体の改善を可能にするスマートシティと自律交通システムの重要な要素である。
本稿では,国家道路交通安全局(NHTSA)の事故報告サンプリングシステム(CRSS)のデータを用いて,米国各地における交通事故の包括的分析を行う。
本稿では,交通事故検知と交通分析の課題に対処するために,交通監視カメラと行動認識システムを用いて事故を自発的に検出・対応する枠組みを提案する。
提案されたフレームワークと緊急サービスを統合することで、交通カメラと機械学習アルゴリズムのパワーを活用して、交通事故への対応とヒューマンエラーの削減に効率的なソリューションを作成することができる。
スマートシティにおける事故検出システムのような高度なインテリジェンス技術は、交通管理と交通事故の深刻度を改善する。
本研究は、米国における交通事故に関する貴重な知見を提供し、交通システムの安全性と効率を高めるための実践的な解決策を提供する。
関連論文リスト
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - AccidentGPT: Accident Analysis and Prevention from V2X Environmental
Perception with Multi-modal Large Model [32.14950866838055]
AccidentGPTは総合的な事故解析とマルチモーダル大模型の予防である。
自律走行車では、車両を制御し衝突を避けるための総合的な環境認識と理解を提供する。
人間の運転する車には、プロアクティブな長距離安全警告と盲点警告を提供します。
我々のフレームワークは、歩行者、車両、道路、環境を含む交通安全のインテリジェントでリアルタイムな分析を支援する。
論文 参考訳(メタデータ) (2023-12-20T16:19:47Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Smart City Transportation: Deep Learning Ensemble Approach for Traffic
Accident Detection [0.0]
本稿では,スマートシティ交通監視システムにおける事故検出に適した軽量ソリューションであるI3D-CONVLSTM2Dモデルアーキテクチャを提案する。
I3D-CONVLSTM2D RGB + Optical-Flow (Trainable) モデルでは, 平均精度が87%, 平均精度が87%であった。
我々の研究は、スマート都市インフラ内のエッジIoTデバイスへのリアルタイム統合を前提とした、高度な視覚ベースの事故検出システムへの道筋を照らしている。
論文 参考訳(メタデータ) (2023-10-16T03:47:08Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
フェールネットは、規模が拡大したミニ都市において、名目上と無謀なドライバーの両方の軌道上で、エンドツーエンドでトレーニングされた、繰り返しニューラルネットワークである。
制御障害、上流での認識エラー、ドライバーのスピードを正確に識別し、名目運転と区別することができる。
速度や周波数ベースの予測器と比較すると、FailureNetのリカレントニューラルネットワーク構造は予測能力を向上し、ハードウェアにデプロイすると84%以上の精度が得られる。
論文 参考訳(メタデータ) (2023-03-21T22:55:51Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
既存の交通事故のデータセットは小規模で、監視カメラからではなく、オープンソースではない。
様々な次元による統合とアノテーションの後に,TADという大規模交通事故データセットが提案されている。
論文 参考訳(メタデータ) (2022-09-26T03:00:50Z) - Review on Action Recognition for Accident Detection in Smart City
Transportation Systems [0.0]
異なる監視カメラを使用してスマートシティの交通の流れを監視することは、事故を認識し、最初の応答者を警告する上で重要な役割を果たす。
コンピュータビジョンタスクにおける行動認識(AR)の利用は、ビデオ監視、医療画像、デジタル信号処理における高精度な応用に寄与している。
本稿では,自動運転車や公共交通安全システムにおける事故検出システムの開発と統合に向けた研究の方向性について述べる。
論文 参考訳(メタデータ) (2022-08-20T03:21:44Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Network-level Safety Metrics for Overall Traffic Safety Assessment: A
Case Study [7.8191100993403495]
本稿では,道路インフラストラクチャセンサによる画像の処理による交通流の安全性評価のための,ネットワークレベルの新しい安全性指標について述べる。
安全性指標とクラッシュデータの統合解析により,代表的なネットワークレベルの安全性指標とクラッシュ頻度との洞察力のある時間的および空間的相関が明らかになった。
論文 参考訳(メタデータ) (2022-01-27T19:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。