Modality Confidence Aware Training for Robust End-to-End Spoken Language
Understanding
- URL: http://arxiv.org/abs/2307.12134v1
- Date: Sat, 22 Jul 2023 17:47:31 GMT
- Title: Modality Confidence Aware Training for Robust End-to-End Spoken Language
Understanding
- Authors: Suyoun Kim, Akshat Shrivastava, Duc Le, Ju Lin, Ozlem Kalinli, Michael
L. Seltzer
- Abstract summary: End-to-end (E2E) spoken language understanding (SLU) systems that generate a semantic parse from speech have become more promising recently.
This approach uses a single model that utilizes audio and text representations from pre-trained speech recognition models (ASR)
We propose a novel E2E SLU system that enhances robustness to ASR errors by fusing audio and text representations based on the estimated modality confidence of ASR hypotheses.
- Score: 18.616202196061966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end (E2E) spoken language understanding (SLU) systems that generate a
semantic parse from speech have become more promising recently. This approach
uses a single model that utilizes audio and text representations from
pre-trained speech recognition models (ASR), and outperforms traditional
pipeline SLU systems in on-device streaming scenarios. However, E2E SLU systems
still show weakness when text representation quality is low due to ASR
transcription errors. To overcome this issue, we propose a novel E2E SLU system
that enhances robustness to ASR errors by fusing audio and text representations
based on the estimated modality confidence of ASR hypotheses. We introduce two
novel techniques: 1) an effective method to encode the quality of ASR
hypotheses and 2) an effective approach to integrate them into E2E SLU models.
We show accuracy improvements on STOP dataset and share the analysis to
demonstrate the effectiveness of our approach.
Related papers
- Towards interfacing large language models with ASR systems using confidence measures and prompting [54.39667883394458]
This work investigates post-hoc correction of ASR transcripts with large language models (LLMs)
To avoid introducing errors into likely accurate transcripts, we propose a range of confidence-based filtering methods.
Our results indicate that this can improve the performance of less competitive ASR systems.
arXiv Detail & Related papers (2024-07-31T08:00:41Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
We introduce a method that utilizes the ASR system's lattice output instead of relying solely on the top hypothesis.
Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM's resilience to noisy speech transcripts.
arXiv Detail & Related papers (2024-01-05T17:58:10Z) - End-to-End Spoken Language Understanding: Performance analyses of a
voice command task in a low resource setting [0.3867363075280543]
We present a study identifying the signal features and other linguistic properties used by an E2E model to perform the Spoken Language Understanding task.
The study is carried out in the application domain of a smart home that has to handle non-English (here French) voice commands.
arXiv Detail & Related papers (2022-07-17T13:51:56Z) - STOP: A dataset for Spoken Task Oriented Semantic Parsing [66.14615249745448]
End-to-end spoken language understanding (SLU) predicts intent directly from audio using a single model.
We release the Spoken Task-Oriented semantic Parsing (STOP) dataset, the largest and most complex SLU dataset to be publicly available.
In addition to the human-recorded audio, we are releasing a TTS-generated version to benchmark the performance for low-resource domain adaptation of end-to-end SLU systems.
arXiv Detail & Related papers (2022-06-29T00:36:34Z) - Deliberation Model for On-Device Spoken Language Understanding [69.5587671262691]
We propose a novel deliberation-based approach to end-to-end (E2E) spoken language understanding (SLU)
We show that our approach can significantly reduce the degradation when moving from natural speech to synthetic speech training.
arXiv Detail & Related papers (2022-04-04T23:48:01Z) - N-Best ASR Transformer: Enhancing SLU Performance using Multiple ASR
Hypotheses [0.0]
Spoken Language Understanding (SLU) parses speech into semantic structures like dialog acts and slots.
We show that our approach significantly outperforms the prior state-of-the-art when subjected to the low data regime.
arXiv Detail & Related papers (2021-06-11T17:29:00Z) - Pre-training for Spoken Language Understanding with Joint Textual and
Phonetic Representation Learning [4.327558819000435]
We propose a novel joint textual-phonetic pre-training approach for learning spoken language representations.
Experimental results on spoken language understanding benchmarks, Fluent Speech Commands and SNIPS, show that the proposed approach significantly outperforms strong baseline models.
arXiv Detail & Related papers (2021-04-21T05:19:13Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
Speech-enabled systems typically first convert audio to text through an automatic speech recognition model and then feed the text to downstream natural language processing modules.
The errors of the ASR system can seriously downgrade the performance of the NLP modules.
Previous work has shown it is effective to employ data augmentation methods to solve this problem by injecting ASR noise during the training process.
arXiv Detail & Related papers (2021-03-25T05:15:43Z) - Semi-Supervised Spoken Language Understanding via Self-Supervised Speech
and Language Model Pretraining [64.35907499990455]
We propose a framework to learn semantics directly from speech with semi-supervision from transcribed or untranscribed speech.
Our framework is built upon pretrained end-to-end (E2E) ASR and self-supervised language models, such as BERT.
In parallel, we identify two essential criteria for evaluating SLU models: environmental noise-robustness and E2E semantics evaluation.
arXiv Detail & Related papers (2020-10-26T18:21:27Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.