論文の概要: Transformer-based Joint Source Channel Coding for Textual Semantic
Communication
- arxiv url: http://arxiv.org/abs/2307.12266v1
- Date: Sun, 23 Jul 2023 08:42:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 16:59:40.840980
- Title: Transformer-based Joint Source Channel Coding for Textual Semantic
Communication
- Title(参考訳): テキスト意味コミュニケーションのためのトランスフォーマベースジョイントソースチャネル符号化
- Authors: Shicong Liu, Zhen Gao, Gaojie Chen, Yu Su, Lu Peng
- Abstract要約: Space-Air-Ground-Sea統合ネットワークコールにより、ジャミングに対するより堅牢でセキュアな送信技術が要求される。
本稿では,文のモデル化とエンコードに先進的な自然言語処理技術を利用する,ロバスト伝送のためのテキスト意味伝達フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.431590618978948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Space-Air-Ground-Sea integrated network calls for more robust and secure
transmission techniques against jamming. In this paper, we propose a textual
semantic transmission framework for robust transmission, which utilizes the
advanced natural language processing techniques to model and encode sentences.
Specifically, the textual sentences are firstly split into tokens using
wordpiece algorithm, and are embedded to token vectors for semantic extraction
by Transformer-based encoder. The encoded data are quantized to a fixed length
binary sequence for transmission, where binary erasure, symmetric, and deletion
channels are considered for transmission. The received binary sequences are
further decoded by the transformer decoders into tokens used for sentence
reconstruction. Our proposed approach leverages the power of neural networks
and attention mechanism to provide reliable and efficient communication of
textual data in challenging wireless environments, and simulation results on
semantic similarity and bilingual evaluation understudy prove the superiority
of the proposed model in semantic transmission.
- Abstract(参考訳): Space-Air-Ground-Sea統合ネットワークは、妨害に対するより堅牢でセキュアな送信技術を要求する。
本稿では,文のモデル化とエンコードに先進的な自然言語処理技術を利用する,ロバスト伝送のためのテキスト意味伝達フレームワークを提案する。
具体的には、テキスト文をワードピースアルゴリズムを用いてトークンに分割し、トランスフォーマベースのエンコーダによる意味抽出のためのトークンベクトルに埋め込む。
符号化されたデータは、伝送のための固定長バイナリシーケンスに量子化され、バイナリ消去、対称、削除チャネルが検討される。
受信されたバイナリシーケンスは、変換器デコーダによってさらに復号化され、文再構成に用いられるトークンとなる。
提案手法は,ニューラルネットワークのパワーと注意機構を利用して,難易度の高い無線環境におけるテキストデータの信頼性と効率的な通信を実現する。
関連論文リスト
- Generative Semantic Communication for Text-to-Speech Synthesis [39.8799066368712]
本稿では,テキスト音声合成のための新しい意味コミュニケーションフレームワークを開発する。
我々はトランスフォーマーエンコーダと拡散モデルを用いて,重要な通信オーバーヘッドを発生させることなく,効率的なセマンティックコーディングを実現する。
論文 参考訳(メタデータ) (2024-10-04T14:18:31Z) - Latency-Aware Generative Semantic Communications with Pre-Trained Diffusion Models [43.27015039765803]
我々は,事前学習した生成モデルを用いた遅延認識型セマンティックコミュニケーションフレームワークを開発した。
我々は,超低レート,低レイテンシ,チャネル適応型セマンティック通信を実証する。
論文 参考訳(メタデータ) (2024-03-25T23:04:09Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
本稿では,実用的な意味コミュニケーションフレームワークを提案する。
2つの知性エージェント間の効果的な目標指向情報共有を可能にする。
数値的な評価は、少ないビット量で効率的な通信を実現するためのフレームワークの能力を示している。
論文 参考訳(メタデータ) (2023-11-30T03:36:19Z) - Semantics Alignment via Split Learning for Resilient Multi-User Semantic
Communication [56.54422521327698]
最近の意味コミュニケーションの研究は、ディープジョイントソースやチャネルコーディング(DeepJSCC)のようなニューラルネットワーク(NN)ベースのトランシーバに依存している。
従来のトランシーバとは異なり、これらのニューラルトランシーバは実際のソースデータとチャネルを使用してトレーニング可能であり、セマンティクスを抽出し通信することができる。
本稿では,分割学習(SL)と部分的NN微調整技術を活用する分散学習ベースソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-13T20:29:55Z) - Alternate Learning based Sparse Semantic Communications for Visual
Transmission [13.319988526342527]
セマンティック通信(Semantic Communication, SemCom)は、従来のビットレベルの正確な伝送よりも優れていることを示す。
本稿では,SparseSBC という視覚伝達のための代替学習システム SemCom を提案する。
論文 参考訳(メタデータ) (2023-07-31T03:34:16Z) - Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial
Attacks [70.51799606279883]
セマンティック・コミュニケーションのためのディープ・ニューラル・ネットワーク(DNN)に対するテスト・タイム・アタックを導入する。
再建損失が低い場合でも,伝達情報のセマンティクスを変更可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T17:13:22Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
トポロジカル空間の観点から意味コミュニケーションを研究する。
送信機はまずデータを$k$の単純複素数にマッピングし、その高次相関を学習する。
受信機は構造を復号し、行方不明または歪んだデータを推測する。
論文 参考訳(メタデータ) (2022-10-30T22:33:44Z) - Error Correction Code Transformer [92.10654749898927]
本稿では,トランスフォーマーアーキテクチャを任意のブロック長で線形符号のソフトデコードに拡張することを提案する。
我々は,各チャネルの出力次元を高次元に符号化し,個別に処理すべきビット情報のより良い表現を行う。
提案手法は、トランスフォーマーの極端なパワーと柔軟性を示し、既存の最先端のニューラルデコーダを、その時間的複雑さのごく一部で大きなマージンで上回る。
論文 参考訳(メタデータ) (2022-03-27T15:25:58Z) - Context-Aware Transformer Transducer for Speech Recognition [21.916660252023707]
本稿では,この文脈信号を利用して,最先端の変圧器ベースASRシステムを改善する新しい文脈対応変圧器トランスデューサ(CATT)ネットワークを提案する。
BERTベースのコンテキストエンコーダを用いたCATTは、ベースライントランスデューサの単語誤り率を改善し、既存の深層文脈モデルよりも24.2%、19.4%向上することを示す。
論文 参考訳(メタデータ) (2021-11-05T04:14:35Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
本稿では,ニューラルマシン翻訳タスクのためのBi-Decoder Augmented Network (BiDAN)を提案する。
各デコーダは入力されたテキストの表現を対応する言語に変換するため、2つの目的語と共同でトレーニングすることで、共有エンコーダは言語に依存しない意味空間を生成することができる。
論文 参考訳(メタデータ) (2020-01-14T02:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。