論文の概要: ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting
- arxiv url: http://arxiv.org/abs/2307.12348v3
- Date: Wed, 18 Oct 2023 11:50:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 20:01:57.756401
- Title: ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting
- Title(参考訳): ResShift: 残差シフトによる画像超解像の効率的な拡散モデル
- Authors: Zongsheng Yue, Jianyi Wang, Chen Change Loy
- Abstract要約: 拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
- 参考スコア(独自算出の注目度): 70.83632337581034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion-based image super-resolution (SR) methods are mainly limited by the
low inference speed due to the requirements of hundreds or even thousands of
sampling steps. Existing acceleration sampling techniques inevitably sacrifice
performance to some extent, leading to over-blurry SR results. To address this
issue, we propose a novel and efficient diffusion model for SR that
significantly reduces the number of diffusion steps, thereby eliminating the
need for post-acceleration during inference and its associated performance
deterioration. Our method constructs a Markov chain that transfers between the
high-resolution image and the low-resolution image by shifting the residual
between them, substantially improving the transition efficiency. Additionally,
an elaborate noise schedule is developed to flexibly control the shifting speed
and the noise strength during the diffusion process. Extensive experiments
demonstrate that the proposed method obtains superior or at least comparable
performance to current state-of-the-art methods on both synthetic and
real-world datasets, even only with 15 sampling steps. Our code and model are
available at https://github.com/zsyOAOA/ResShift.
- Abstract(参考訳): 拡散に基づく画像超解像法(SR)は主に、数百から数千のサンプリングステップの要求により、低い推論速度によって制限される。
既存の加速サンプリング技術は必然的に性能を犠牲にし、過度なSR結果をもたらす。
そこで本稿では,srの新しい効率的な拡散モデルを提案する。拡散ステップ数を大幅に削減し,推論時の高速化の必要性をなくし,それに伴う性能劣化を解消する。
本手法では,高分解能画像と低分解能画像との間で残差を移動させ,遷移効率を大幅に向上させるマルコフ連鎖を構築する。
また、拡散過程におけるシフト速度と騒音強度を柔軟に制御する精巧なノイズスケジュールを開発する。
実験の結果,提案手法は,15段階のサンプリングでも,合成と実世界の両方のデータセットにおいて,現在の最先端手法よりも優れた,あるいは少なくとも同等の性能が得られることが示された。
私たちのコードとモデルはhttps://github.com/zsyoaoa/resshiftで利用可能です。
関連論文リスト
- A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
拡散モデルは,高忠実度画像生成のためのGAN(Generative Adversarial Network)の優れた代替品として登場した。
しかし、そのリアルタイム実現性は、遅いトレーニングと推論速度によって妨げられている。
本研究では,ウェーブレットを用いた単一画像超解法のための条件拡散GANスキームを提案する。
論文 参考訳(メタデータ) (2024-10-23T15:34:06Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [30.973473583364832]
DoSSRは、事前訓練された拡散モデルの生成力を生かしたドメインシフト拡散に基づくSRモデルである。
このアプローチの核となるのは、既存の拡散モデルとシームレスに統合されるドメインシフト方程式です。
提案手法は, 合成および実世界のデータセットに対して, 5つのサンプリングステップしか必要とせず, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T12:16:11Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
本研究では,画像復元のための新しい,効率的な拡散モデルを提案する。
提案手法は,推論中の後処理の高速化を回避し,関連する性能劣化を回避する。
提案手法は,3つの古典的IRタスクにおける現在の最先端手法よりも優れた,あるいは同等の性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T05:06:07Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
拡散モデルに基づく超解像(SR)法は有望な結果を示す。
しかし、それらの実践的応用は、必要な推論ステップのかなりの数によって妨げられている。
本稿では,SinSRという単一ステップのSR生成を実現するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:21:29Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。