論文の概要: Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm
- arxiv url: http://arxiv.org/abs/2307.12524v1
- Date: Mon, 24 Jul 2023 04:46:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 15:43:51.196509
- Title: Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm
- Title(参考訳): VSXC-LSTMアルゴリズムによる地すべり面の変位予測
- Authors: Menglin Kong, Ruichen Li, Fan Liu, Xingquan Li, Juan Cheng, Muzhou
Hou, Cong Cao
- Abstract要約: 本研究領域における最近の地すべりの実際の一方向表面変位データに関するモデリング研究を行う。
変動モード分解に基づくVMD-SegSigmoid-XGBoost-ClusterLSTMという時系列予測フレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.282712030154569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Landslide is a natural disaster that can easily threaten local ecology,
people's lives and property. In this paper, we conduct modelling research on
real unidirectional surface displacement data of recent landslides in the
research area and propose a time series prediction framework named
VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode
decomposition, which can predict the landslide surface displacement more
accurately. The model performs well on the test set. Except for the random item
subsequence that is hard to fit, the root mean square error (RMSE) and the mean
absolute percentage error (MAPE) of the trend item subsequence and the periodic
item subsequence are both less than 0.1, and the RMSE is as low as 0.006 for
the periodic item prediction module based on XGBoost\footnote{Accepted in
ICANN2023}.
- Abstract(参考訳): 地すべりは自然災害であり、地元の生態、人々の生活、財産を脅かすことができる。
本稿では,最近の地すべりの地すべりに関する実一方向の地すべりデータに関するモデル研究を行い,変動モード分解に基づくvmd-segsigmoid-xgboost-clusterlstm (vsxc-lstm) と呼ばれる時系列予測フレームワークを提案し,地すべり面変位をより正確に予測する。
モデルはテストセットでうまく機能します。
適合しにくいランダムアイテム列を除いて、トレンドアイテム列と周期アイテム列のルート平均二乗誤差(RMSE)および平均絶対パーセンテージ誤差(MAPE)は0.1未満であり、このRMSEはXGBoost\footnote{Accepted in ICANN2023}に基づく周期アイテム予測モジュールに対して0.006以下である。
関連論文リスト
- Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data [39.40116554523575]
In-Context Learning with a Prior-Data Fitted Network に基づく新しいアプローチである Drift-Resilient TabPFN を提案する。
先行した合成データセットのベイズ推定を近似することを学ぶ。
精度は0.688から0.744に向上し、OC AUCは0.786から0.832に向上し、キャリブレーションも強化された。
論文 参考訳(メタデータ) (2024-11-15T23:49:23Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - Max-affine regression via first-order methods [7.12511675782289]
最大アフィンモデルは信号処理と統計学の応用においてユビキタスに現れる。
最大アフィン回帰に対する勾配降下(GD)とミニバッチ勾配降下(SGD)の非漸近収束解析を行った。
論文 参考訳(メタデータ) (2023-08-15T23:46:44Z) - Deep learning for bias-correcting CMIP6-class Earth system models [0.0]
本稿では,cGANsに基づくポストプロセッシング手法により,最先端のCMIP6クラスESMのバイアスを補正できることを示す。
本手法は, 金標準偏差調整フレームワークと同様に局所周波数分布を均等に改善するが, 空間パターンの補正において既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-16T13:53:57Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
本稿では,ノイズと密度の変動のある点群から正規性を正確に予測できるHSurf-Netという新しい正規推定手法を提案する。
実験結果から, HSurf-Netは, 合成形状データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-10-13T16:39:53Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - On Learning Mixture of Linear Regressions in the Non-Realizable Setting [44.307245411703704]
線形回帰(MLR)の混合はラベルを予測せずに値のリストを予測できることを示す。
本稿では,一般的な最小化 (AM) アルゴリズムのバージョンが,実現可能なモデルが仮定されていない場合でも,データセットに最も適した線を見つけることを示す。
論文 参考訳(メタデータ) (2022-05-26T05:34:57Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - LSTM-based Anomaly Detection for Non-linear Dynamical System [11.797156206007612]
本稿では,Long Short-Term Memory (LSTM)に基づく非線形力学系における新しい異常検出手法を提案する。
まず、データ前処理、多段階予測、異常検出を含む非線形力学系におけるLSTMに基づく異常検出の枠組みについて述べる。
提案手法は,壁面せん断応力データセットにおいて従来の手法よりも高い精度で予測できる。
論文 参考訳(メタデータ) (2020-06-05T01:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。