論文の概要: PRIOR: Prototype Representation Joint Learning from Medical Images and
Reports
- arxiv url: http://arxiv.org/abs/2307.12577v2
- Date: Wed, 27 Sep 2023 08:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 19:00:07.922822
- Title: PRIOR: Prototype Representation Joint Learning from Medical Images and
Reports
- Title(参考訳): PRIOR:医用画像からのプロトタイプ表現共同学習とその報告
- Authors: Pujin Cheng, Li Lin, Junyan Lyu, Yijin Huang, Wenhan Luo, Xiaoying
Tang
- Abstract要約: 医用画像とレポートのグローバルなアライメントとローカルなアライメントを組み合わせた表現学習フレームワークを提案する。
標準的なグローバルな多モードアライメント手法とは対照的に、細粒度表現に局所アライメントモジュールを用いる。
低レベルのローカライズされた視覚的および高レベルの臨床言語的特徴に焦点を合わせることができる文量プロトタイプメモリバンクを構築する。
- 参考スコア(独自算出の注目度): 19.336988866061294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning based vision-language joint pre-training has emerged as
a successful representation learning strategy. In this paper, we present a
prototype representation learning framework incorporating both global and local
alignment between medical images and reports. In contrast to standard global
multi-modality alignment methods, we employ a local alignment module for
fine-grained representation. Furthermore, a cross-modality conditional
reconstruction module is designed to interchange information across modalities
in the training phase by reconstructing masked images and reports. For
reconstructing long reports, a sentence-wise prototype memory bank is
constructed, enabling the network to focus on low-level localized visual and
high-level clinical linguistic features. Additionally, a non-auto-regressive
generation paradigm is proposed for reconstructing non-sequential reports.
Experimental results on five downstream tasks, including supervised
classification, zero-shot classification, image-to-text retrieval, semantic
segmentation, and object detection, show the proposed method outperforms other
state-of-the-art methods across multiple datasets and under different dataset
size settings. The code is available at https://github.com/QtacierP/PRIOR.
- Abstract(参考訳): コントラスト学習に基づく視覚言語共同学習は,表現学習戦略として成功している。
本稿では,医用画像とレポートのグローバルなアライメントとローカルなアライメントを両立させた表現学習フレームワークを提案する。
標準のグローバルマルチモダリティアライメント法とは対照的に,細粒度表現には局所アライメントモジュールを用いる。
さらに、マスク画像とレポートを再構成することにより、トレーニングフェーズにおけるモダリティ間の情報を交換するクロスモダリティ条件リコンストラクションモジュールも設計されている。
長いレポートを再構築するために,低レベルの局所的な視覚的特徴と高レベルの臨床言語的特徴に焦点をあてる文的プロトタイプメモリバンクを構築した。
さらに、非逐次レポートの再構築のために、非自己回帰生成パラダイムを提案する。
教師付き分類、ゼロショット分類、画像からテキストへの検索、セマンティックセグメンテーション、オブジェクト検出を含む5つの下流タスクの実験結果から、提案手法は複数のデータセットと異なるデータセットサイズ設定下で、他の最先端メソッドよりも優れていることを示す。
コードはhttps://github.com/qtacierp/priorで入手できる。
関連論文リスト
- A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation [12.948027961485536]
Weakly Supervised Semantic (WSSS) アプローチを提案する。
本手法は診断精度の向上と医用画像の効率向上に資する技術である。
論文 参考訳(メタデータ) (2024-11-19T16:20:27Z) - Correlation Weighted Prototype-based Self-Supervised One-Shot Segmentation of Medical Images [12.365801596593936]
医用画像セグメンテーションは、十分な注釈付きデータが入手できない領域の1つである。
スーパーピクセルから生成された擬似ラベルを用いた,プロトタイプベースのワンショット学習フレームワークを提案する。
提案手法は,最先端の手法と同等に機能することを示す。
論文 参考訳(メタデータ) (2024-08-12T15:38:51Z) - LPN: Language-guided Prototypical Network for few-shot classification [16.37959398470535]
ラベル付き例を限定して、新しいタスクに適応することを目的としている。
近年の手法では,クエリとサポート画像の類似性の適切な測定方法が検討されている。
本稿では,言語誘導型プロトタイプネットワーク(LPN)を提案する。
論文 参考訳(メタデータ) (2023-07-04T06:54:01Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
本稿では,データソースの非一様結合をトレーニングすることで,流動的な記述を生成するタスクに対処する。
ノイズの多い画像とテキストのペアを持つ大規模データセットは、サブ最適の監視源を提供する。
本稿では,検索コンポーネントから抽出したスタイルトークンとキーワードを組み込むことにより,セマンティクスと記述スタイルを活用・分離することを提案する。
論文 参考訳(メタデータ) (2021-11-24T19:00:05Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Mining Contextual Information Beyond Image for Semantic Segmentation [37.783233906684444]
セマンティックイメージセグメンテーションにおける文脈集約問題について検討する。
個々の画像以外の文脈情報をマイニングして、ピクセル表現をさらに強化することを提案する。
提案手法は,既存のセグメンテーションフレームワークに強制的に組み込むことができる。
論文 参考訳(メタデータ) (2021-08-26T14:34:23Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
本稿では,大規模な画像分類タスクに基づいて事前学習した畳み込みニューラルネットワークに基づくアプローチを提案する。
得られた表現をグローバルなシーン情報と組み合わせて視覚的サリエンシを正確に予測する。
最先端技術と比較して、このネットワークは軽量な画像分類バックボーンに基づいている。
論文 参考訳(メタデータ) (2019-02-18T16:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。