Addressing the Impact of Localized Training Data in Graph Neural
Networks
- URL: http://arxiv.org/abs/2307.12689v2
- Date: Tue, 28 Nov 2023 10:59:01 GMT
- Title: Addressing the Impact of Localized Training Data in Graph Neural
Networks
- Authors: Akansha A
- Abstract summary: Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved notable success in learning from
graph-structured data, owing to their ability to capture intricate dependencies
and relationships between nodes. They excel in various applications, including
semi-supervised node classification, link prediction, and graph generation.
However, it is important to acknowledge that the majority of state-of-the-art
GNN models are built upon the assumption of an in-distribution setting, which
hinders their performance on real-world graphs with dynamic structures. In this
article, we aim to assess the impact of training GNNs on localized subsets of
the graph. Such restricted training data may lead to a model that performs well
in the specific region it was trained on but fails to generalize and make
accurate predictions for the entire graph. In the context of graph-based
semi-supervised learning (SSL), resource constraints often lead to scenarios
where the dataset is large, but only a portion of it can be labeled, affecting
the model's performance. This limitation affects tasks like anomaly detection
or spam detection when labeling processes are biased or influenced by human
subjectivity. To tackle the challenges posed by localized training data, we
approach the problem as an out-of-distribution (OOD) data issue by by aligning
the distributions between the training data, which represents a small portion
of labeled data, and the graph inference process that involves making
predictions for the entire graph. We propose a regularization method to
minimize distributional discrepancies between localized training data and graph
inference, improving model performance on OOD data. Extensive tests on popular
GNN models show significant performance improvement on three citation GNN
benchmark datasets. The regularization approach effectively enhances model
adaptation and generalization, overcoming challenges posed by OOD data.
Related papers
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
arXiv Detail & Related papers (2024-02-29T05:44:41Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Diving into Unified Data-Model Sparsity for Class-Imbalanced Graph
Representation Learning [30.23894624193583]
Graph Neural Networks (GNNs) training upon non-Euclidean graph data often encounters relatively higher time costs.
We develop a unified data-model dynamic sparsity framework named Graph Decantation (GraphDec) to address challenges brought by training upon a massive class-imbalanced graph data.
arXiv Detail & Related papers (2022-10-01T01:47:00Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.