論文の概要: Fairness Under Demographic Scarce Regime
- arxiv url: http://arxiv.org/abs/2307.13081v2
- Date: Tue, 17 Sep 2024 19:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:57:01.072003
- Title: Fairness Under Demographic Scarce Regime
- Title(参考訳): デモグラフィー・スカース・レジームによるフェアネス
- Authors: Patrik Joslin Kenfack, Samira Ebrahimi Kahou, Ulrich Aïvodji,
- Abstract要約: フェアネスと精度のトレードオフを改善する属性分類器を構築するためのフレームワークを提案する。
不確実な感度特性を持つ試料に公正性制約を課すことは、公正性-正確性トレードオフに悪影響を及ぼす可能性があることを示す。
我々のフレームワークは、ほとんどのベンチマークで真に敏感な属性に対する公平性制約で訓練されたモデルより優れている。
- 参考スコア(独自算出の注目度): 7.523105080786704
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Most existing works on fairness assume the model has full access to demographic information. However, there exist scenarios where demographic information is partially available because a record was not maintained throughout data collection or for privacy reasons. This setting is known as demographic scarce regime. Prior research has shown that training an attribute classifier to replace the missing sensitive attributes (proxy) can still improve fairness. However, using proxy-sensitive attributes worsens fairness-accuracy tradeoffs compared to true sensitive attributes. To address this limitation, we propose a framework to build attribute classifiers that achieve better fairness-accuracy tradeoffs. Our method introduces uncertainty awareness in the attribute classifier and enforces fairness on samples with demographic information inferred with the lowest uncertainty. We show empirically that enforcing fairness constraints on samples with uncertain sensitive attributes can negatively impact the fairness-accuracy tradeoff. Our experiments on five datasets showed that the proposed framework yields models with significantly better fairness-accuracy tradeoffs than classic attribute classifiers. Surprisingly, our framework can outperform models trained with fairness constraints on the true sensitive attributes in most benchmarks. We also show that these findings are consistent with other uncertainty measures such as conformal prediction.
- Abstract(参考訳): フェアネスに関する既存の研究のほとんどは、モデルが人口統計情報に完全にアクセスできると仮定している。
しかし、データ収集全体やプライバシー上の理由から記録が維持されていないため、人口統計情報が部分的に利用できるシナリオが存在する。
この設定は人口減少体制として知られている。
以前の研究では、欠落した機密属性(プロキシ)を置き換えるために属性分類器をトレーニングすることは、それでも公平性を向上させることが示されている。
しかし、プロキシ・センシティブな属性を使用すると、真のセンシティブな属性に比べて公平さと正確さのトレードオフが悪化する。
この制限に対処するため、フェアネスと精度のトレードオフを改善する属性分類器を構築するためのフレームワークを提案する。
本手法は属性分類器における不確実性認識を導入し,最も低い不確実性で推定される人口統計情報を用いたサンプルに公平性を付与する。
不確実な感度特性を持つ試料に公正性制約を課すことは、公平性と精度のトレードオフに悪影響を及ぼすことを実証的に示す。
5つのデータセットに対する実験により,提案手法は古典的属性分類器よりも,フェアネス・精度のトレードオフが著しく優れたモデルが得られることが示された。
驚いたことに、我々のフレームワークは、ほとんどのベンチマークで真に敏感な属性に対して公正な制約で訓練されたモデルより優れている。
また,これらの知見は共形予測などの他の不確実性指標と一致していることを示す。
関連論文リスト
- Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) は広く応用されている。
従来の手法で訓練されたFACモデルは、様々なデータサブポピュレーションにまたがる精度の不整合を示すことによって不公平である可能性がある。
本研究は,付加アノテーションなしでバイアスデータ上で公正なFACモデルをトレーニングするための,新しい世代ベースの2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-11T10:50:53Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
トレーニングデータや検証データの機密属性にアクセスすることなく、公平な分類器を訓練するフレームワークを提案する。
我々は,これらのプロキシラベルが平均精度制約下での公平性を最大化するために利用できることを理論的,実証的に示す。
論文 参考訳(メタデータ) (2023-02-02T19:45:50Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Fairness without the sensitive attribute via Causal Variational
Autoencoder [17.675997789073907]
EUにおけるプライバシーの目的とRGPDのような多彩な規制のため、多くの個人機密属性は収集されないことが多い。
近年の開発成果を近似推論に活用することにより,このギャップを埋めるためのアプローチを提案する。
因果グラフに基づいて、機密情報プロキシを推論するために、SRCVAEと呼ばれる新しい変分自動符号化ベースのフレームワークを利用する。
論文 参考訳(メタデータ) (2021-09-10T17:12:52Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
本稿では,これらの特徴を同時利用して正確な予測とモデルの正則化を行う新しいフレームワークを提案する。
実世界のデータセットにおける実験結果は,提案モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-04-29T17:52:11Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
本稿では,潜在性識別特徴を効果的に識別し,治療できる新しいアルゴリズムを提案する。
このアプローチは、モデルパフォーマンスを改善するために差別のない機能を集めるのに役立つ。
論文 参考訳(メタデータ) (2020-02-26T10:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。