Gait Cycle-Inspired Learning Strategy for Continuous Prediction of Knee
Joint Trajectory from sEMG
- URL: http://arxiv.org/abs/2307.13209v1
- Date: Tue, 25 Jul 2023 02:23:58 GMT
- Title: Gait Cycle-Inspired Learning Strategy for Continuous Prediction of Knee
Joint Trajectory from sEMG
- Authors: Xueming Fu, Hao Zheng, Luyan Liu, Wenjuan Zhong, Haowen Liu, Wenxuan
Xiong, Yuyang Zhang, Yifeng Chen, Dong Wei, Mingjie Dong, Yefeng Zheng,
Mingming Zhang
- Abstract summary: This paper proposes a model integrating two gait cycle-inspired learning strategies to mitigate the challenge for predicting human knee joint trajectory.
By learning through separate network entities, the model manages to capture both the common and personalized gait features.
Experimental results indicate that our model could predict knee angles with the average root mean square error (RMSE) of 3.03(0.49) degrees and 50ms ahead of time.
- Score: 24.608475386117426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting lower limb motion intent is vital for controlling exoskeleton
robots and prosthetic limbs. Surface electromyography (sEMG) attracts
increasing attention in recent years as it enables ahead-of-time prediction of
motion intentions before actual movement. However, the estimation performance
of human joint trajectory remains a challenging problem due to the inter- and
intra-subject variations. The former is related to physiological differences
(such as height and weight) and preferred walking patterns of individuals,
while the latter is mainly caused by irregular and gait-irrelevant muscle
activity. This paper proposes a model integrating two gait cycle-inspired
learning strategies to mitigate the challenge for predicting human knee joint
trajectory. The first strategy is to decouple knee joint angles into motion
patterns and amplitudes former exhibit low variability while latter show high
variability among individuals. By learning through separate network entities,
the model manages to capture both the common and personalized gait features. In
the second, muscle principal activation masks are extracted from gait cycles in
a prolonged walk. These masks are used to filter out components unrelated to
walking from raw sEMG and provide auxiliary guidance to capture more
gait-related features. Experimental results indicate that our model could
predict knee angles with the average root mean square error (RMSE) of
3.03(0.49) degrees and 50ms ahead of time. To our knowledge this is the best
performance in relevant literatures that has been reported, with reduced RMSE
by at least 9.5%.
Related papers
- Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings.
We present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data.
We propose a model that can multitask, adapt continually, anticipate movements, and refine locomotion.
arXiv Detail & Related papers (2024-05-02T09:22:54Z) - AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
We introduce a novel all-in-one-stage framework, AiOS, for expressive human pose and shape recovery without an additional human detection step.
We first employ a human token to probe a human location in the image and encode global features for each instance.
Then, we introduce a joint-related token to probe the human joint in the image and encoder a fine-grained local feature.
arXiv Detail & Related papers (2024-03-26T17:59:23Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Koopman pose predictions for temporally consistent human walking
estimations [11.016730029019522]
We introduce a new factor graph factor based on Koopman theory that embeds the nonlinear dynamics of lower-limb movement activities.
We show that our approach reduces outliers on the skeleton form by almost 1 m, while preserving natural walking trajectories at depths up to more than 10 m.
arXiv Detail & Related papers (2022-05-05T16:16:06Z) - From Motion to Muscle [0.0]
We show that muscle activity can be artificially generated based on motion features such as position, velocity, and acceleration.
The model achieves remarkable precision for previously trained movements and maintains significantly high precision for new movements that have not been previously trained.
arXiv Detail & Related papers (2022-01-27T13:30:17Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - A novel approach for modelling and classifying sit-to-stand kinematics
using inertial sensors [0.6243048287561809]
The sit-to-stand movement is often affected in older adults due to frailty and in patients with motor impairments such as Parkinson's disease leading to falls.
We propose a three-segment body model for estimating sit-to-stand kinematics using only two wearable inertial sensors.
We applied this model on 10 younger healthy adults (YH), 12 older healthy adults (OH) and 12 people with Parkinson's disease (PwP)
arXiv Detail & Related papers (2021-07-14T17:31:50Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
Skeletal and Musculoskeletal human models were considered for motions in the sagittal plane.
Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions.
arXiv Detail & Related papers (2021-05-15T16:33:24Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.