Bridging Structural Dynamics and Biomechanics: Human Motion Estimation through Footstep-Induced Floor Vibrations
- URL: http://arxiv.org/abs/2503.16455v1
- Date: Fri, 21 Feb 2025 20:10:15 GMT
- Title: Bridging Structural Dynamics and Biomechanics: Human Motion Estimation through Footstep-Induced Floor Vibrations
- Authors: Yiwen Dong, Jessica Rose, Hae Young Noh,
- Abstract summary: Existing approaches involve monitoring devices such as cameras, wearables, and pressure mats.<n>We leverage gait-induced floor vibration to estimate lower-limb joint motion.<n>Our model poses physical constraints to reduce uncertainty while allowing information sharing between the body and the floor.
- Score: 2.7180946990643466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative estimation of human joint motion in daily living spaces is essential for early detection and rehabilitation tracking of neuromusculoskeletal disorders (e.g., Parkinson's) and mitigating trip and fall risks for older adults. Existing approaches involve monitoring devices such as cameras, wearables, and pressure mats, but have operational constraints such as direct line-of-sight, carrying devices, and dense deployment. To overcome these limitations, we leverage gait-induced floor vibration to estimate lower-limb joint motion (e.g., ankle, knee, and hip flexion angles), allowing non-intrusive and contactless gait health monitoring in people's living spaces. To overcome the high uncertainty in lower-limb movement given the limited information provided by the gait-induced floor vibrations, we formulate a physics-informed graph to integrate domain knowledge of gait biomechanics and structural dynamics into the model. Specifically, different types of nodes represent heterogeneous information from joint motions and floor vibrations; Their connecting edges represent the physiological relationships between joints and forces governed by gait biomechanics, as well as the relationships between forces and floor responses governed by the structural dynamics. As a result, our model poses physical constraints to reduce uncertainty while allowing information sharing between the body and the floor to make more accurate predictions. We evaluate our approach with 20 participants through a real-world walking experiment. We achieved an average of 3.7 degrees of mean absolute error in estimating 12 joint flexion angles (38% error reduction from baseline), which is comparable to the performance of cameras and wearables in current medical practices.
Related papers
- K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics [15.245241949892584]
The K2MUSE dataset includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements.
This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion.
arXiv Detail & Related papers (2025-04-20T13:03:56Z) - Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control [47.423243831156285]
We present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control.<n>We demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data.<n>KINESIS generates muscle activity patterns that correlate well with human EMG activity.
arXiv Detail & Related papers (2025-03-18T18:37:49Z) - COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation [98.05046790227561]
COIN is a control-inpainting motion diffusion prior that enables fine-grained control to disentangle human and camera motions.
COIN outperforms the state-of-the-art methods in terms of global human motion estimation and camera motion estimation.
arXiv Detail & Related papers (2024-08-29T10:36:29Z) - Continual Learning from Simulated Interactions via Multitask Prospective Rehearsal for Bionic Limb Behavior Modeling [0.7922558880545526]
We introduce a model for human behavior in the context of bionic prosthesis control.<n>We propose a multitasking, continually adaptive model that anticipates and refines movements over time.<n>We validate our model through experiments on real-world human gait datasets, including transtibial amputees.
arXiv Detail & Related papers (2024-05-02T09:22:54Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms [0.5530212768657544]
We propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion boundaries from motion capture data.
We also propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms.
arXiv Detail & Related papers (2023-11-17T17:14:42Z) - Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower
Body Motion Estimation Using Smart Textile [2.2008680042670123]
We present a multimodal dataset with benchmarks collected using a novel pair of Intelligent Knee Sleeves for human pose estimation.
Our system utilizes synchronized datasets that comprise time-series data from the Knee Sleeves and the corresponding ground truth labels from the visualized motion capture camera system.
We employ these to generate 3D human models solely based on the wearable data of individuals performing different activities.
arXiv Detail & Related papers (2023-10-02T00:34:21Z) - Gait Cycle-Inspired Learning Strategy for Continuous Prediction of Knee
Joint Trajectory from sEMG [24.608475386117426]
This paper proposes a model integrating two gait cycle-inspired learning strategies to mitigate the challenge for predicting human knee joint trajectory.
By learning through separate network entities, the model manages to capture both the common and personalized gait features.
Experimental results indicate that our model could predict knee angles with the average root mean square error (RMSE) of 3.03(0.49) degrees and 50ms ahead of time.
arXiv Detail & Related papers (2023-07-25T02:23:58Z) - Contact-Aware Retargeting of Skinned Motion [49.71236739408685]
This paper introduces a motion estimation method that preserves self-contacts and prevents interpenetration.
The method identifies self-contacts and ground contacts in the input motion, and optimize the motion to apply to the output skeleton.
In experiments, our results quantitatively outperform previous methods and we conduct a user study where our retargeted motions are rated as higher-quality than those produced by recent works.
arXiv Detail & Related papers (2021-09-15T17:05:02Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.