Probe thermometry with continuous measurements
- URL: http://arxiv.org/abs/2307.13407v1
- Date: Tue, 25 Jul 2023 11:00:02 GMT
- Title: Probe thermometry with continuous measurements
- Authors: Julia Boeyens, Bj\"orn Annby-Andersson, Pharnam Bakhshinezhad,
G\'eraldine Haack, Mart\'i Perarnau-Llobet, Stefan Nimmrichter, Patrick P.
Potts, and Mohammad Mehboudi
- Abstract summary: A standard approach is provided by probe thermometry, where a probe is brought into contact with a sample and examined after a certain amount of time has passed.
Here, we consider a minimal model, where the probe is provided by a two-level system coupled to a thermal reservoir.
Monitoring thermally activated transitions enables real-time estimation of temperature with increasing accuracy over time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temperature estimation plays a vital role across natural sciences. A standard
approach is provided by probe thermometry, where a probe is brought into
contact with the sample and examined after a certain amount of time has passed.
In many situations however, continuously monitoring the probe may be preferred.
Here, we consider a minimal model, where the probe is provided by a two-level
system coupled to a thermal reservoir. Monitoring thermally activated
transitions enables real-time estimation of temperature with increasing
accuracy over time. Within this framework we comprehensively investigate
thermometry in both bosonic and fermionic environments employing a Bayesian
approach. Furthermore, we explore adaptive strategies and find a significant
improvement on the precision. Additionally, we examine the impact of noise and
find that adaptive strategies may suffer more than non-adaptive ones for short
observation times. While our main focus is on thermometry, our results are
easily extended to the estimation of other environmental parameters, such as
chemical potentials and transition rates.
Related papers
- Bypassing thermalization timescales in temperature estimation using
prethermal probes [0.0]
We introduce prethermal temperature probes for sensitive, fast and robust temperature estimation.
We find that prethermal probes surpass the corresponding equilibrium probes in terms of effective thermal sensitivity.
arXiv Detail & Related papers (2023-11-09T16:34:17Z) - Long Horizon Temperature Scaling [90.03310732189543]
Long Horizon Temperature Scaling (LHTS) is a novel approach for sampling from temperature-scaled joint distributions.
We derive a temperature-dependent LHTS objective, and show that finetuning a model on a range of temperatures produces a single model capable of generation with a controllable long horizon temperature parameter.
arXiv Detail & Related papers (2023-02-07T18:59:32Z) - Low-temperature quantum thermometry boosted by coherence generation [0.0]
We present a method for low-temperature measurement that improves thermal range and sensitivity by generating quantum coherence in a thermometer probe.
We use a two-level quantum system, or qubit, as our probe and prevent direct probe access to the sample by introducing a set of ancilla qubits as an interface.
arXiv Detail & Related papers (2022-11-10T10:12:58Z) - Relativistic quantum thermometry through a moving sensor [0.0]
We find that the thermometry is completely unaffected by the Lamb shift of the energy levels.
We show that a practical technique can be utilized to implement such a quantum thermometry.
arXiv Detail & Related papers (2022-08-08T21:30:53Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Uninformed Bayesian Quantum Thermometry [0.0]
We study the Bayesian approach to thermometry with no prior knowledge about the expected temperature scale.
We propose two new estimators based on an optimization of relative deviations.
arXiv Detail & Related papers (2021-08-16T11:39:01Z) - Optimal nonequilibrium thermometry in Markovian environments [0.0]
We find that for a general class of sample-probe interactions the scaling of the measurement uncertainty is inversely proportional to the time of the process.
We show that the Lamb shift induced by the probe-sample interaction can play a relevant role in thermometry.
arXiv Detail & Related papers (2021-07-09T13:19:42Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Real-time estimation of the optically detected magnetic resonance shift
in diamond quantum thermometry [47.50219326456544]
We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in nanodiamonds (NDs)
Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals.
arXiv Detail & Related papers (2020-06-12T01:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.