Team Intro to AI team8 at CoachAI Badminton Challenge 2023: Advanced
ShuttleNet for Shot Predictions
- URL: http://arxiv.org/abs/2307.13715v1
- Date: Tue, 25 Jul 2023 16:10:45 GMT
- Title: Team Intro to AI team8 at CoachAI Badminton Challenge 2023: Advanced
ShuttleNet for Shot Predictions
- Authors: Shih-Hong Chen, Pin-Hsuan Chou, Yong-Fu Liu and Chien-An Han
- Abstract summary: We aim to improve the performance of the existing framework ShuttleNet in predicting badminton shot types and locations by leveraging past strokes.
We participated in the CoachAI Badminton Challenge at IJCAI 2023 and achieved significantly better results compared to the baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, our objective is to improve the performance of the existing
framework ShuttleNet in predicting badminton shot types and locations by
leveraging past strokes. We participated in the CoachAI Badminton Challenge at
IJCAI 2023 and achieved significantly better results compared to the baseline.
Ultimately, our team achieved the first position in the competition and we made
our code available.
Related papers
- MuLMINet: Multi-Layer Multi-Input Transformer Network with Weighted Loss [6.854732863866882]
We present a Multi-Layer Multi-Input Transformer Network (MuLMINet) that leverages professional badminton player match data to accurately predict future shot types and area coordinates.
Our approach resulted in achieving the runner-up (2nd place) in the IJCAI CoachAI Badminton Challenge 2023, Track 2.
arXiv Detail & Related papers (2023-07-17T06:10:03Z) - Benchmarking Stroke Forecasting with Stroke-Level Badminton Dataset [13.502952342104644]
We provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022.
To benchmark existing work with ShuttleSet22, we hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge @ IJCAI 2023.
arXiv Detail & Related papers (2023-06-27T17:57:34Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
We present ShuttleSet, the largest publicly-available badminton singles dataset with annotated stroke-level records.
It contains 104 sets, 3,685 rallies, and 36,492 strokes in 44 matches between 2018 and 2021 with 27 top-ranking men's singles and women's singles players.
ShuttleSet is manually annotated with a computer-aided labeling tool to increase the labeling efficiency and effectiveness of selecting the shot type.
arXiv Detail & Related papers (2023-06-08T05:41:42Z) - The 7th AI City Challenge [87.23137854688389]
The AI City Challenge's seventh edition emphasizes two domains at the intersection of computer vision and artificial intelligence.
The 2023 challenge had five tracks, which drew a record-breaking number of participation requests from 508 teams across 46 countries.
The participating teams' top performances established strong baselines and even outperformed the state-of-the-art in the proposed challenge tracks.
arXiv Detail & Related papers (2023-04-15T08:02:16Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
We propose a semi-supervised win prediction model for esports based on graph convolutional networks.
GCN-WP integrates over 30 features about the match and players and employs graph convolution to classify games based on their neighborhood.
Our model achieves state-of-the-art prediction accuracy when compared to machine learning or skill rating models for LoL.
arXiv Detail & Related papers (2022-07-26T21:38:07Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
The goal of the competition was to promote research towards agents that use learning from human feedback (LfHF) techniques to solve open-world tasks.
Rather than mandating the use of LfHF techniques, we described four tasks in natural language to be accomplished in the video game Minecraft.
Teams developed a diverse range of LfHF algorithms across a variety of possible human feedback types.
arXiv Detail & Related papers (2022-04-14T17:24:54Z) - ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles
for Stroke Forecasting in Badminton [18.524164548051417]
This paper focuses on objectively judging what and where to return strokes in turn-based sports.
We propose a novel Position-aware Fusion of Rally Progress and Player Styles framework (ShuttleNet) that incorporates rally progress and information of the players.
arXiv Detail & Related papers (2021-12-02T08:14:23Z) - Exploring the Long Short-Term Dependencies to Infer Shot Influence in
Badminton Matches [9.553207911311926]
We introduce a badminton language to fully describe the process of the shot.
We propose a deep learning model composed of a novel short-term extractor and a long-term encoder.
Our model incorporates an attention mechanism to enable the transparency of the action sequence to the rally result.
arXiv Detail & Related papers (2021-09-14T04:44:40Z) - NTIRE 2021 Multi-modal Aerial View Object Classification Challenge [88.89190054948325]
We introduce the first Challenge on Multi-modal Aerial View Object Classification (MAVOC) in conjunction with the NTIRE 2021 workshop at CVPR.
This challenge is composed of two different tracks using EO and SAR imagery.
We discuss the top methods submitted for this competition and evaluate their results on our blind test set.
arXiv Detail & Related papers (2021-07-02T16:55:08Z) - Two-Stream Consensus Network: Submission to HACS Challenge 2021
Weakly-Supervised Learning Track [78.64815984927425]
The goal of weakly-supervised temporal action localization is to temporally locate and classify action of interest in untrimmed videos.
We adopt the two-stream consensus network (TSCN) as the main framework in this challenge.
Our solution ranked 2rd in this challenge, and we hope our method can serve as a baseline for future academic research.
arXiv Detail & Related papers (2021-06-21T03:36:36Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
In real-world multiagent systems, agents with different capabilities may join or leave without altering the team's overarching goals.
We propose COPA, a coach-player framework to tackle this problem.
We 1) adopt the attention mechanism for both the coach and the players; 2) propose a variational objective to regularize learning; and 3) design an adaptive communication method to let the coach decide when to communicate with the players.
arXiv Detail & Related papers (2021-05-18T17:27:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.