Benchmarking Stroke Forecasting with Stroke-Level Badminton Dataset
- URL: http://arxiv.org/abs/2306.15664v3
- Date: Mon, 22 Apr 2024 03:43:10 GMT
- Title: Benchmarking Stroke Forecasting with Stroke-Level Badminton Dataset
- Authors: Wei-Yao Wang, Wei-Wei Du, Wen-Chih Peng, Tsi-Ui Ik,
- Abstract summary: We provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022.
To benchmark existing work with ShuttleSet22, we hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge @ IJCAI 2023.
- Score: 13.502952342104644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, badminton analytics has drawn attention due to the advancement of artificial intelligence and the efficiency of data collection. While there is a line of effective applications to improve and investigate player performance, there are only a few public badminton datasets that can be used by researchers outside the badminton domain. Existing badminton singles datasets focus on specific matchups; however, they cannot provide comprehensive studies on different players and various matchups. In this paper, we provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022. ShuttleSet22 consists of 30,172 strokes in 2,888 rallies in the training set, 1,400 strokes in 450 rallies in the validation set, and 2,040 strokes in 654 rallies in the testing set, with detailed stroke-level metadata within a rally. To benchmark existing work with ShuttleSet22, we hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge @ IJCAI 2023, to encourage researchers to tackle this real-world problem through innovative approaches and to summarize insights between the state-of-the-art baseline and improved techniques, exchanging inspiring ideas. The baseline codes and the dataset are made available at https://github.com/wywyWang/CoachAI-Projects/tree/main/CoachAI-Challenge-IJCAI2023.
Related papers
- Deep learning for action spotting in association football videos [64.10841325879996]
The SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances.
This paper traces the history of action spotting in sports, from the creation of the task back in 2018, to the role it plays today in research and the sports industry.
arXiv Detail & Related papers (2024-10-02T07:56:15Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Team Intro to AI team8 at CoachAI Badminton Challenge 2023: Advanced
ShuttleNet for Shot Predictions [0.0]
We aim to improve the performance of the existing framework ShuttleNet in predicting badminton shot types and locations by leveraging past strokes.
We participated in the CoachAI Badminton Challenge at IJCAI 2023 and achieved significantly better results compared to the baseline.
arXiv Detail & Related papers (2023-07-25T16:10:45Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
We present ShuttleSet, the largest publicly-available badminton singles dataset with annotated stroke-level records.
It contains 104 sets, 3,685 rallies, and 36,492 strokes in 44 matches between 2018 and 2021 with 27 top-ranking men's singles and women's singles players.
ShuttleSet is manually annotated with a computer-aided labeling tool to increase the labeling efficiency and effectiveness of selecting the shot type.
arXiv Detail & Related papers (2023-06-08T05:41:42Z) - The 7th AI City Challenge [87.23137854688389]
The AI City Challenge's seventh edition emphasizes two domains at the intersection of computer vision and artificial intelligence.
The 2023 challenge had five tracks, which drew a record-breaking number of participation requests from 508 teams across 46 countries.
The participating teams' top performances established strong baselines and even outperformed the state-of-the-art in the proposed challenge tracks.
arXiv Detail & Related papers (2023-04-15T08:02:16Z) - A Reinforcement Learning Badminton Environment for Simulating Player
Tactics (Student Abstract) [4.7376902105662255]
We focus on turn-based sports and introduce a badminton environment by simulating rallies with different angles of view.
This benefits not only coaches and players by simulating past matches for tactic investigation, but also researchers from rapidly evaluating their novel algorithms.
arXiv Detail & Related papers (2022-11-22T12:38:12Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
This work consists of 2,721 video clips collected from the broadcasting videos of professional table tennis matches in World Table Tennis Championships and Olympiads.
We formulate two sets of action detection problems -- emphaction localization and emphaction recognition.
The results confirm that TheName is still a challenging task and can be used as a special benchmark for dense action detection from videos.
arXiv Detail & Related papers (2022-07-26T08:34:17Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles
for Stroke Forecasting in Badminton [18.524164548051417]
This paper focuses on objectively judging what and where to return strokes in turn-based sports.
We propose a novel Position-aware Fusion of Rally Progress and Player Styles framework (ShuttleNet) that incorporates rally progress and information of the players.
arXiv Detail & Related papers (2021-12-02T08:14:23Z) - Exploring the Long Short-Term Dependencies to Infer Shot Influence in
Badminton Matches [9.553207911311926]
We introduce a badminton language to fully describe the process of the shot.
We propose a deep learning model composed of a novel short-term extractor and a long-term encoder.
Our model incorporates an attention mechanism to enable the transparency of the action sequence to the rally result.
arXiv Detail & Related papers (2021-09-14T04:44:40Z) - Two-Stream Consensus Network: Submission to HACS Challenge 2021
Weakly-Supervised Learning Track [78.64815984927425]
The goal of weakly-supervised temporal action localization is to temporally locate and classify action of interest in untrimmed videos.
We adopt the two-stream consensus network (TSCN) as the main framework in this challenge.
Our solution ranked 2rd in this challenge, and we hope our method can serve as a baseline for future academic research.
arXiv Detail & Related papers (2021-06-21T03:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.