論文の概要: UPREVE: An End-to-End Causal Discovery Benchmarking System
- arxiv url: http://arxiv.org/abs/2307.13757v1
- Date: Tue, 25 Jul 2023 18:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 14:34:45.076262
- Title: UPREVE: An End-to-End Causal Discovery Benchmarking System
- Title(参考訳): UPREVE: エンドツーエンドの因果発見ベンチマークシステム
- Authors: Suraj Jyothi Unni, Paras Sheth, Kaize Ding, Huan Liu, and K. Selcuk
Candan
- Abstract要約: ユーザフレンドリーなWebベースグラフィカルユーザインタフェース(GUI)であるUpload,preprocess, Visualize, Evaluate(UPREVE)を提示する。
UPREVEは複数のアルゴリズムを同時に実行し、因果関係を視覚化し、学習した因果グラフの精度を評価する。
提案手法は,因果発見をよりアクセシブルでユーザフレンドリなものにすることを目的としており,ユーザがよりよい意思決定のために貴重な洞察を得られるようにすることを目的としている。
- 参考スコア(独自算出の注目度): 24.303130018154388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering causal relationships in complex socio-behavioral systems is
challenging but essential for informed decision-making. We present Upload,
PREprocess, Visualize, and Evaluate (UPREVE), a user-friendly web-based
graphical user interface (GUI) designed to simplify the process of causal
discovery. UPREVE allows users to run multiple algorithms simultaneously,
visualize causal relationships, and evaluate the accuracy of learned causal
graphs. With its accessible interface and customizable features, UPREVE
empowers researchers and practitioners in social computing and
behavioral-cultural modeling (among others) to explore and understand causal
relationships effectively. Our proposed solution aims to make causal discovery
more accessible and user-friendly, enabling users to gain valuable insights for
better decision-making.
- Abstract(参考訳): 複雑な社会行動システムにおける因果関係の発見は困難であるが、インフォームド・意思決定には不可欠である。
我々は,因果発見プロセスの簡略化を目的とした,ユーザフレンドリな web ベースのグラフィカルユーザインタフェース (gui) である upload, preprocess, visualize, and evaluation (upreve) を提案する。
UPREVEは複数のアルゴリズムを同時に実行し、因果関係を視覚化し、学習した因果グラフの精度を評価する。
アクセス可能なインターフェースとカスタマイズ可能な機能により、UPREVEは社会コンピューティングや行動文化モデリング(その他)の研究者や実践者に因果関係を効果的に探求し理解させる。
提案するソリューションは,因果発見をよりアクセスしやすく,ユーザフレンドリにすることを目的としている。
関連論文リスト
- AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data [14.328402787379538]
本稿では,自然言語インタラクションによる知識管理プラットフォームである AgentiGraph (タスクベースインタラクションとグラフィカル表現のための適応生成ENgine) を紹介する。
AgentiGraphはマルチエージェントアーキテクチャを使用して、ユーザの意図を動的に解釈し、タスクを管理し、新しい知識を統合する。
3,500のテストケースのデータセットの実験結果から、AgentiGraphは最先端のゼロショットベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-15T12:05:58Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Causal Structure Representation Learning of Confounders in Latent Space
for Recommendation [6.839357057621987]
ユーザの過去のフィードバックからユーザの好みを推測することは,レコメンデーションシステムにおいて重要な問題である。
我々は、共同創設者の影響を考慮し、潜在分野におけるユーザー嗜好から引き離し、相互依存をモデル化するために因果グラフを用いる。
論文 参考訳(メタデータ) (2023-11-02T08:46:07Z) - VISPUR: Visual Aids for Identifying and Interpreting Spurious
Associations in Data-Driven Decisions [8.594140167290098]
シンプソンのパラドックス(シンプソンのパラドックス、英: paradox)は、集合とサブグループレベルの関連が互いに矛盾する現象である。
既存のツールは、人間が実際に急激な協会の落とし穴を見つけ、推論し、防ぐための洞察をほとんど提供しない。
本稿では、因果解析フレームワークと人間中心のワークフローを提供する視覚分析システムであるVISPURを提案する。
論文 参考訳(メタデータ) (2023-07-26T18:40:07Z) - PyRCA: A Library for Metric-based Root Cause Analysis [66.72542200701807]
PyRCAは、AIOps(AIOps)のためのRoot Cause Analysis(RCA)のオープンソースの機械学習ライブラリである。
複雑なメトリクス因果依存性を明らかにし、インシデントの根本原因を自動的に特定する、包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-06-20T09:55:10Z) - A Unified Comparison of User Modeling Techniques for Predicting Data
Interaction and Detecting Exploration Bias [17.518601254380275]
我々は,4つのユーザスタディデータセットの多種多様なセットにおいて,その性能に基づいて8つのユーザモデリングアルゴリズムを比較し,ランク付けする。
本研究は,ユーザインタラクションの分析と可視化のためのオープンな課題と新たな方向性を強調した。
論文 参考訳(メタデータ) (2022-08-09T19:51:10Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Knowledge-aware Coupled Graph Neural Network for Social Recommendation [29.648300580880683]
我々は、アイテムやユーザ間で依存する知識をレコメンデーションフレームワークに注入する知識認識結合グラフニューラルネットワーク(KCGN)を提案する。
KCGNは,グローバルグラフ構造認識のための相互情報を活用することにより,高次ユーザ・アイテム関係符号化を実現する。
さらに、動的マルチタイプユーザ-イテム対話パターンをキャプチャする機能により、KCGNをさらに強化する。
論文 参考訳(メタデータ) (2021-10-08T09:13:51Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。