Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy
- URL: http://arxiv.org/abs/2307.13808v2
- Date: Tue, 13 Feb 2024 05:27:44 GMT
- Title: Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy
- Authors: Yu Fu, Deyi Xiong, Yue Dong
- Abstract summary: We introduce a semantic-aware watermarking algorithm that considers the characteristics of conditional text generation and the input context.
Experimental results demonstrate that our proposed method yields substantial improvements across various text generation models.
- Score: 52.765898203824975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To mitigate potential risks associated with language models, recent AI
detection research proposes incorporating watermarks into machine-generated
text through random vocabulary restrictions and utilizing this information for
detection. While these watermarks only induce a slight deterioration in
perplexity, our empirical investigation reveals a significant detriment to the
performance of conditional text generation. To address this issue, we introduce
a simple yet effective semantic-aware watermarking algorithm that considers the
characteristics of conditional text generation and the input context.
Experimental results demonstrate that our proposed method yields substantial
improvements across various text generation models, including BART and Flan-T5,
in tasks such as summarization and data-to-text generation while maintaining
detection ability.
Related papers
- BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks [19.689433249830465]
Existing watermarking techniques struggle with low watermark strength and stringent false-positive requirements.
tool splits generated text into positive and negative poles, enhancing detection without requiring additional computational resources.
arXiv Detail & Related papers (2025-01-21T14:32:50Z) - GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMark is a simple, efficient, and relatively robust scheme for watermarking large language models.
We show that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations.
arXiv Detail & Related papers (2025-01-17T22:30:08Z) - Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - On Evaluating The Performance of Watermarked Machine-Generated Texts Under Adversarial Attacks [20.972194348901958]
We first comb the mainstream watermarking schemes and removal attacks on machine-generated texts.
We evaluate eight watermarks (five pre-text, three post-text) and twelve attacks (two pre-text, ten post-text) across 87 scenarios.
Results indicate that KGW and Exponential watermarks offer high text quality and watermark retention but remain vulnerable to most attacks.
arXiv Detail & Related papers (2024-07-05T18:09:06Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
arXiv Detail & Related papers (2024-02-28T05:43:22Z) - Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated
Student Essay Detection [29.433764586753956]
Large language models (LLMs) have exhibited remarkable capabilities in text generation tasks.
The utilization of these models carries inherent risks, including but not limited to plagiarism, the dissemination of fake news, and issues in educational exercises.
This paper aims to bridge this gap by constructing AIG-ASAP, an AI-generated student essay dataset.
arXiv Detail & Related papers (2024-02-01T08:11:56Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
Large Language Models (LLMs) perform impressively well in various applications.
The potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use.
We stress-test the robustness of these AI text detectors in the presence of an attacker.
arXiv Detail & Related papers (2023-03-17T17:53:19Z) - Adversarial Watermarking Transformer: Towards Tracing Text Provenance
with Data Hiding [80.3811072650087]
We study natural language watermarking as a defense to help better mark and trace the provenance of text.
We introduce the Adversarial Watermarking Transformer (AWT) with a jointly trained encoder-decoder and adversarial training.
AWT is the first end-to-end model to hide data in text by automatically learning -- without ground truth -- word substitutions along with their locations.
arXiv Detail & Related papers (2020-09-07T11:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.